点乘(Dot Product):结果是个数。
从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。
代数:[a b c][d e f]=ad+be+cf
几何:A·B=|A|·|B|·cosθ。如下图|A| cos(θ)是A到B的投影。
叉积(Cross Product):结果是向量。
几何表达式为:a x b=|a||b|sinθ n ;
代数:[a b c]x[d e f]=[ bf-ec cd-fa ae-bd ]
大小为:|a||b|sin
θ。方向
n为:与a,b都垂直 且a,b,a×b成右手定则,如下图所示:
有问题联系qq:295951389