1.VOC2007
总共:9963
test: 4952
trainval:5011(train: 2501 ; val: 2510)
2.VOC2012
trainval: 11540 ( train:5717 ; val:5823) 只是有11540张用于检测任务,下载VOC数据集中JPEGImages文件夹存储了17125张图片,没有全部用到检测
文件夹中Main:存放的是图像物体识别的数据,总共分为20类(算背景就是21类),包含了20个分类的train.txt(存放训练集的图片编号,每一个class的train数据都有5717个)、 val.txt(存放验证集的图片编号,每一个class的val数据都有5823个) 和 trainval.txt(存放以上两者的完全合并集,每一个class有5717+5832=11540个)
3.目标检测常用数据集
- 目前目标检测常用的是 VOC2007 和 VOC2012 数据集,因为二者是互斥的,论文中的常用组合有以下几种:
- 07+12: 使用 VOC2007 和 VOC2012 的 train+val(16551) 上训练,然后使用 VOC2007 的 test(4952) 测试
- 07++12: 使用 VOC2007 的 train+val+test(9963) 和 VOC2012的 train+val(11540) 训练,然后使用 VOC2012 的 test 测试,这种方法需提交到 PASCAL VOC Evaluation Server 上评估结果,因为 VOC2012 test 没有公布
参考博客:
voc2007数据集
VOC2012数据集注解
Pascal Voc数据集详解 以Voc2012为例
voc参考
https://zhuanlan.zhihu.com/p/362044555