数学建模学习笔记(10):岭回归和Lasso回归

基本概述

  • 方法功能:可以视为逐步回归法的升级版,主要用于在回归模型中存在多重共线性时筛选自变量。
  • 方法原理:在一般回归模型的损失函数的基础上加上了正则项(惩罚项),两种回归的区别在于正则项不同。岭回归的惩罚项是回归系数的平方和;Lasso回归的惩罚项是回归系数的绝对值的和。
  • 其他作用:都可以对模型进行一定程度的简化,避免模型过于复杂。

传统回归模型的四个假定

  • 线性假定:假设因变量和自变量之间存在线性关系。
  • 严格外生性假定
  • 无完全多重共线性假定
  • 球型扰动项假定

岭回归

数据预处理步骤:进行岭回归之前需要观察自变量的量纲是否统一,如果不统一则需要对数据进行标准化处理。

筛选惩罚项系数的方法

  • 岭迹分析:在同一张图中作出惩罚项系数和除常数项外的所有回归系数的关系图,并按照下面的一般原则进行系数选择:

(1)各个回归系数的岭迹基本稳定;
(2)用最小二乘法估计时不合理的回归系数,其岭回归的符号变得合理。
(3)回归系数没有不合乎经济意义的绝对值。
(4)残差平方和增大不太多。

实际使用时可以直接通过软件找出最佳的惩罚项系数。

  • 方差膨胀因子法:不断增大惩罚项系数大小,直到所有自变量的方差膨胀因子都小于10。
  • 最小化均方预测误差:这是目前使用最多的方法。以均方误差最小化作为优化目标,用K折交叉验证法找到使得整个模型均方误差最小的系数。

Lasso回归

模型现状:目前Lasso回归的使用率远高于岭回归,因此实际建模时推荐优先使用Lasso回归。

Lasso回归的最大优点:能够把不重要的自变量的回归系数压缩到零,从而起到很好的变量筛选作用。

Lasso回归的缺点:没有显式解,只能使用近似估计算法计算回归系数。

什么情况下进行Lasso回归:首先对原始模型进行多重共线性检验,如果存在多重共线性,那么就可以用Lasso回归进行自变量筛选并回归。

数据需要统一量纲:Lasso回归也需要首先统一自变量的量纲,也就是需要对自变量进行标准化。

备注
Stata中只能一次对一个特征进行标准化,因此在特征较多时使用不太方便,一般会采用Matlab、Excel或SPSS对数据进行标准化处理。
SPSS数据标准化步骤描述→将标准化得分另存为变量→确定。

Stata进行Lasso回归语法cvlasso 因变量 自变量1,自变量2,.... , lopt seed(随机数种子)

语法解释:lopt表示选择使得均方误差最小的系数;seed表示设置随机数种子,使得结果具有可重复性。

Lasso回归结果解读

  • 最优惩罚项系数:第一张结果表格中带星的是使得均方误差最小的惩罚项系数。
  • Lasso回归系数:第二张结果表格中第一列表示Lasso估计的变量系数,只有经过筛选较为重要的变量才会拥有系数,其余自变量系数变为零。
  • 筛选后变量重新回归的系数:右边一列Post Lasso表示经过变量筛选后再用筛选出的自变量进行一般的OLS回归所得到的回归系数。
  • 3
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 这两种回归方法都是常用的建模方法,它们的目的都是降低数据中噪声的干扰,最大限度地提高拟合度,以获得更准确的预测结果。岭回归采用L2正则化,通过加入一个惩罚项来限制参数的大小,从而达到减少过拟合的目的;而Lasso回归则采用L1正则化,将参数的绝对值之和作为惩罚项,从而实现参数的稀疏化,即选择出最有用的参数。 ### 回答2: 岭回归(Ridge Regression)和Lasso回归Lasso Regression)都是广泛应用于线性回归问题的正则化方法。它们在一定程度上解决了多重共线性(multicollinearity)问题,并在模型中引入了稀疏性。 区别: 1. 正则化形式不同:岭回归通过在损失函数中添加L2正则化项(惩罚系数为lambda * 权重的平方和)来控制模型复杂度,而Lasso回归则是通过L1正则化项(惩罚系数为lambda * 权重的绝对值之和)来实现。 2. 约束条件不同:在Lasso回归中,权重的绝对值之和不能超过λ,这导致一些权重被压缩为0,从而实现了稀疏性。而岭回归中,权重没有被压缩至0。 3. 特征选择:由于Lasso回归的L1正则化项的特性,它能够自动选择对模型预测性能更为重要的特征,将无关特征的权重压缩为0。这使得Lasso回归在特征选择方面表现更好。岭回归没有此特性。 联系: 1. 均可用于解决多重共线性问题。由于二者对模型复杂度进行约束,能够有效减小特征间的相互影响,提高模型稳定性。 2. 均属于线性回归的拟合方法,都可以应用于解决线性回归问题,通过最小二乘法求解参数。 3. 正则化项的惩罚系数都需要事先设定,用于平衡模型的预测性能和模型复杂度。 需要注意的是,岭回归Lasso回归适用于不同的问题场景。当特征数量较多但特征间相关性较大时,可以选择岭回归。当特征数量较多而且存在无关特征时,可以选择Lasso回归。 ### 回答3: 岭回归Lasso回归都是用于处理多重共线性问题的线性回归方法,它们有一些相似之处,也有一些不同之处。 1. 区别: - 正则化项:岭回归使用了L2范数作为正则化项,而Lasso回归使用了L1范数作为正则化项。岭回归的L2范数会使得系数向零逼近但不为零,而Lasso回归的L1范数会使得部分系数变为零,从而实现变量选择的效果。 - 可解释性:Lasso回归在特征选择方面更加强大,通过使得某些系数变为零,可以剔除对结果影响较小的特征变量,从而提高了模型的可解释性。而岭回归则更适用于降低多重共线性问题,使得模型更稳定。 - 系数的估计:由于Lasso回归会使得部分系数变为零,因此在存在一些相关变量时,它的系数估计更偏向于零,而岭回归则不会使得系数等于零。 2. 联系: - 正则化项:两种回归方法都使用了正则化项,从而约束了模型的参数估计,减小了过拟合的风险。 - 均衡参数:岭回归Lasso回归都需要通过调整超参数来控制正则化项的强度,以平衡拟合优度和对模型复杂度的惩罚。 综上所述,岭回归Lasso回归都是处理多重共线性问题的常用方法,岭回归主要用于减小模型参数的方差,而Lasso回归更适用于特征选择。在实际应用中,我们可以根据具体问题的需求选择使用哪种方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值