猕猴视神经实验的双光子成像与智能控制系统的构建
实验简介:清醒猴视觉皮层神经元长时期的光遗传控制和双光子成像
这个实验似乎对外行来说有点复杂,但是其核心理念很简单:探索视觉相关功能和大脑皮层内部活动的关系;上次在和其组内的博士生讨论时,谈到这确实是一系列自由度很高的实验,你可以利用这个实验的基础设施去设计很多有意义的研究计划(就我而言:我希望研究视觉推理和大脑表征的联系);
唐世明研究组利用腺相关病毒AAV转入光敏感通道蛋白C1V1及钙探针GCaMP5/6s相关基因,在猕猴初级视皮层实现了长时期稳定的神经元光遗传控制和双光子成像,并可利用双光子光激活模式对给定的神经元进行精准的单神经元控制,这种可同时进行神经元光控制和神经元活动成像的技术被称为“全光学光遗传技术”;
研究结果表明:猕猴视皮层神经元可以高效、稳定地表达光敏感通道蛋白,使用较低功率的光照,即可给清醒猕猴植入虚拟的视知觉,这种虚拟视知觉产生的行为效应,比从视网膜输入的真实视觉刺激还要快30ms左右;
从理论上分析,"双光子成像"是作为旁观角度通过成像探知其大脑皮层神经元的活动原理,而"影响其光敏感通道蛋白以植入虚拟视知觉"是在了解其原理后进一步加入的人工干预去验证一些想法;
通过双光子成像获取的对应某个视觉刺激 ζ t \zeta_t ζt的脑视觉皮层成像 X t X_t Xt;
视神经活动的特点
在实验中我们将猕猴的全身固定,只允许其眼球转动,这样我们对其施加视觉刺激信号 ζ t \zeta_t ζt,即可得到其眼球转动的反应信号 θ t \theta_t θt(是眼球相对于相机的角度),以及其视神经皮层V1的双光子成像信号 X t X_t Xt,在实际试验中我们允许多个反应信号对应单个刺激信号,即施加刺激后我们捕捉的是一个反应信号序列 { θ i , ζ i } ( t ) \{ \theta_i,\zeta_i \}^{(t)} {θi,ζi}(t);
视神经实验的目的比较纯粹:即获得视觉场景刺激和视神经皮层表征的关系和规律;实验结果指向对不同的猕猴和对相似场景的图片,其视觉皮层的representation具有相似性;再加上只有极少数的视觉神经细胞对某个特定场景有反应,我们可以认为这是对场景信号的高度抽象的稀疏编码;
对应每个特殊场景(猫、人等等),脑视觉皮层的神经元的活跃特点是稀疏的:
自动控制系统的特点
这是需要强reasoning ability的task;和pure response的视神经信号刺激实验不同,自动控制系统需要智能体首先理解任务,然后需要根据先验知识和任务的目标做出决策,最后还要操控低级的控制器完成任务,这就需要至少三种表征方式;其中做出决策的功能是最复杂的,类似强化学习问题中的 π t ( a t ∣ S t , K ) \pi_t{(a^t|S_t,K)} πt(at∣St,K);
事实上设计这样的实验是难以实现的,我们不大可能在其负责逻辑的大脑皮层再开一个口观察其皮层神经元的活动,即使如此也难以设计一个可以量化评估的逻辑控制task去让猴子完成(可否只允许眼球和双手可以动,来完成一些简单指令的任务,观察其大脑皮层的运作?);
inspired by visual neurons principle:brain-like logic reasoning system
受视神经皮层细胞活动的启发,我们可以构建一个类脑的智能推理系统,核心仍然是encoding和representation,这是神经元天然具备的能力;大脑不擅长决策,但擅长演绎;
一个规律性实验的结果:如果某个图像总是规律性地在空白之后出现在screen的左上方,在有奖励刺激的情况下(比如果汁会在其眼球视角和目标物呈相交时打开电阀门),那么猕猴应该会归纳出这个规律,然后自然决策看上左上方;
以上其实就是归纳演绎的原型(或者说turple system),我们可以采用类似多个简单函数逼近任意复杂函数的手法,使构造这样多个简单演绎能力的系统逼近及其智能的复杂推理系统;