🌟 引言
在AI开发领域,HuggingFace是不可或缺的资源宝库。但在国内,访问HuggingFace有时会遇到网络障碍。本文将分享如何通过设置环境变量和部署Xinference来解决这一问题,让您的开发之路畅通无阻!
🛠️ 环境变量设置
1. HuggingFace 镜像网站设置
国内访问HuggingFace时,我们可以通过设置环境变量来指定镜像网站,从而绕过网络限制。以下是具体操作:
export HF_ENDPOINT=https://hf-mirror.com
此命令将HuggingFace的请求重定向到国内镜像网站,有效提升访问速度。
2. 魔塔(ModelScope)访问设置
除了HuggingFace,您可能还需要访问魔塔(ModelScope)。通过以下环境变量设置,可以指定模型源:
export XINFERENCE_MODEL_SRC=modelscope
这确保了即使在网络受限的情况下,也能顺利加载模型。
🚀 Linux环境下Xinference部署与启动
1. 部署启动命令
在Linux环境下,我们可以通过以下Docker命令快速部署并启动Xinference:
sudo docker run \
--name xinference -d \
-v ~/.xinference:/root/.xinference \
-v ~/.cache/huggingface:/root/.cache/huggingface \
-v ~/.cache/modelscope:/root/.cache/modelscope \
-v /etc/localtime:/etc/localtime \
-p 9997:9997 \
--gpus all \
-e HF_ENDPOINT=https://hf-mirror.com \
-e XINFERENCE_MODEL_SRC=modelscope \
registry.cn-hangzhou.aliyuncs.com/xprobe_xinference/xinference:latest \
xinference-local -H 0.0.0.0
2. 参数详解
--name xinference
:为容器指定名称。-d
:让容器在后台运行。-v
:挂载宿主机目录到容器,用于数据持久化。-p 9997:9997
:将容器端口映射到宿主机,便于访问。--gpus all
:分配所有GPU资源给容器,提升计算能力。-e
:设置环境变量,确保正确访问HuggingFace和魔塔。registry.cn-hangzhou.aliyuncs.com/xprobe_xinference/xinference:latest
:指定使用的Xinference镜像。
📈 结论
通过以上步骤,您可以在国内轻松访问HuggingFace,并部署Xinference以提升开发效率。希望这篇文章能帮助您解决实际问题,让您的开发之路更加顺畅!