pytorch实现Sep conv卷积操作

Sep Conv

这个卷积名字起得花里胡哨的,其实总结起来就是输入通道每个通道一个卷积得到和输入通道数相同的特征图,然后再使用若干个1*1的卷积聚合每个特征图的值得到输出特征图。

假设我们输入通道是16,输出特征图是32,并且使用3*3的卷积提取特征,那么第一步一共需要16*3*3个参数,第二步需要32*16*1*1个参数,一共需要16*3*3+32*16*1*1=656个参数。

使用传统的方法进行卷积一共需要32*16*3*3=4608个参数。
可见Sep Conv在计算量上有明显的优势,下面就是pytorch实现的Sep Conv卷积

import torch
import torch.nn as nn


class SepConv(nn.Module):
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值