【数学】均匀分布生成其他分布的方法

本文探讨如何利用均匀分布生成其他概率分布,包括通过CDF的反函数法、Acceptance-Rejection Method和针对正态分布的特定方法如中心极限定理、Box-Muller变换以及ziggurat方法。这些方法在随机数生成和模拟中扮演重要角色。
摘要由CSDN通过智能技术生成

起因是前几天做A厂的在线编程题,需要用正态分布去生成一个随机数,最后调用了C++自带的正态分布生成库,这时就在想底层是如何实现正态分布的。

由均匀分布生成其他分布的通用性方法

CDF的反函数法/Inverse transform sampling

先用均匀分布生成一个数,把其映射到[0,1]之间

double U = (double)rand() / RAND_MAX;

这样的一个[0,1]分布,怎么将其转换成一个其他分布呢?
这时就用到了概率分布的累积分布函数(CDF- Cumulative distribution function)
这里写图片描述
找到纵坐标[0,1]对应的横坐标点,就生成了一个满足该概率分布的点。
所以将这个方法形式化一下:

  1. 用均匀分布生成[0,1]之间的均匀分布产生的数 x
  2. 找到CDF函数 F(x) 的反函数 F1(x) 带入反函数中得到的数就是满足该概率分布生成的一个数。

这种方法有一个问题就是,需要算出反函数的解析解,如果没有解析解的话,就不能直接用这种方法了【比如正态分布】
其实仔细一想轮盘赌算法不就是应用的CDF反函数法吗?

Acceptance-Rejection Method/rejection sampling

这个就是应用蒙特卡洛解决一切的思路来了,每次在这个下面这个概率密度坐标里随机生成一个点【随机采样】如果这个点落在了概率密度函数(PDF-probability density function)之下,则采样成功,如果落在了上面则继续采样。

这里写图片描述
这种方法等于是模拟概率密度函数:它每次生成新的随机数后,通过另一个随机数来保证其被接受概率服从指定的PDF。

正态分布的特定方法

中心极限定理法

中心极限定理
X1,X2,,Xn 是独立同分布的,分布均值为 μ ,方差为 σ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值