详解熵, 交叉熵,KL散度,互信息

本文详细介绍了信息论中的熵、联合熵、条件熵、相对熵(KL散度)和互信息的概念。在机器学习中,这些概念被用于衡量概率分布的相似性、特征选择和模型优化。互信息可以表示两个变量的相关性,并在特征选择中帮助减少不确定性,尤其在决策树算法中。此外,与F检验相比,互信息更能捕捉非线性相关性。
摘要由CSDN通过智能技术生成

首先介绍几个信息论中的概念。

熵, 表示某个概率分布的不确定度:
H ( x ) = − ∑ p ( x ) l o g p ( x ) H(x) = - \sum p(x) log p(x) H(x)=p(x)logp(x)


联合熵,两个变量联合分布的不确定度:
H ( x , y ) = ∑ ∑ p ( x , y ) l o g p ( x , y ) H(x,y) = \sum \sum p(x,y) log p(x,y) H(x,y)=p(x,y)logp(x,y)


条件熵,在X确定后,Y的不确定度:
H ( Y ∣ X ) = ∑ p ( x i ) H ( Y ∣ X = x i ) = ∑ ∑ p ( x , y ) l o g ( p ( x , y ) / p ( x ) ) H(Y|X) = \sum p(x_i) H(Y|X=x_i) = \sum \sum p(x,y) log (p(x,y)/p(x)) H(YX)=p(xi)H(YX=xi)=p(x,y)l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值