详解熵, 交叉熵,KL散度,互信息

本文详细介绍了信息论中的熵、联合熵、条件熵、相对熵(KL散度)和互信息的概念。在机器学习中,这些概念被用于衡量概率分布的相似性、特征选择和模型优化。互信息可以表示两个变量的相关性,并在特征选择中帮助减少不确定性,尤其在决策树算法中。此外,与F检验相比,互信息更能捕捉非线性相关性。
摘要由CSDN通过智能技术生成

首先介绍几个信息论中的概念。

熵, 表示某个概率分布的不确定度:
H ( x ) = − ∑ p ( x ) l o g p ( x ) H(x) = - \sum p(x) log p(x) H(x)=p(x)logp(x)


联合熵,两个变量联合分布的不确定度:
H ( x , y ) = ∑ ∑ p ( x , y ) l o g p ( x , y ) H(x,y) = \sum \sum p(x,y) log p(x,y) H(x,y)=p(x,y)logp(x,y)


条件熵,在X确定后,Y的不确定度:
H ( Y ∣ X ) = ∑ p ( x i ) H ( Y ∣ X = x i ) = ∑ ∑ p ( x , y ) l o g ( p ( x , y ) / p ( x ) ) H(Y|X) = \sum p(x_i) H(Y|X=x_i) = \sum \sum p(x,y) log (p(x,y)/p(x)) H(YX)=p(xi)H(YX=xi)=p(x,y)l

### 信息 信息是一种衡量随机变量不确定性的指标。对于离型随机变量 \(X\),其概率质量函数为 \(P(X)\),则信息定义如下: \[ H(X) = - \sum_{i=1}^{n} P(x_i) \log_2(P(x_i)) \] 其中,\(P(x_i)\) 表示事件 \(x_i\) 发生的概率[^1]。 信息越高,则系统的不确定性越大;反之亦然。 --- ### 交叉熵 交叉熵是用来衡量两个概率分布之间差异的一种方法,在机器学习中广泛应用于分类任务中的损失计算。假设真实分布为 \(P\),预测分布为 \(Q\),那么交叉熵可以表示为: \[ H(P, Q) = - \sum_{i=1}^{n} P(x_i) \log(Q(x_i)) \] 这里需要注意的是,交叉熵不仅依赖于真实的概率分布 \(P\),还取决于模型预测的概率分布 \(Q\)。因此,它是评估模型性能的重要工具之一[^2]。 --- ### KL KL (Kullback-Leibler divergence),也称为相对,用于量化两个概率分布之间的差异程。给定两个概率分布 \(P\) \(Q\),KL 的公式为: \[ D_{KL}(P || Q) = \sum_{i=1}^{n} P(x_i) \log{\frac{P(x_i)}{Q(x_i)}} \] 值得注意的是,KL 具有 **非对称性** **非负性** 的特点。即通常情况下 \(D_{KL}(P || Q) \neq D_{KL}(Q || P)\)[^3]。 --- ### JS JS (Jensen-Shannon divergence)是对称版本的 KL ,解决了 KL 不对称的问题。它通过引入中间分布来实现这一点。设 \(M = \frac{1}{2}(P + Q)\),则 JS 可写成: \[ D_{JS}(P || Q) = \frac{1}{2} D_{KL}(P || M) + \frac{1}{2} D_{KL}(Q || M) \] 由于 JS 基于 KL 构建,所以它的取值范围在 \([0, 1]\) 内,并且满足对称性有限性条件。 --- ### 定义区别与联系 | 指标 | 描述 | |------------|------------------------------------------------------------------------------------------| | **信息** | 测量单个随机变量本身的不确定性 | | **交叉熵** | 量两个概率分布间的差异,主要用于监督学习中的目标优化 | | **KL ** | 计算一个分布相对于另一个分布的信息增益或“距离”,是非对称的 | | **JS ** | 基于 KL 改进而来,解决非对称问题并提供更稳定的数值表现 | 这些概念都属于信息论范畴,但在实际应用中有不同的侧重点。例如,交叉熵被频繁用作神经网络训练的目标函数,而 KL 更多地出现在变分推断等领域。 --- ### 在机器学习学习中的作用 - **信息**:帮助理解数据集内部结构以及特征的重要性。 - **交叉熵**:作为分类任务的核心损失函数,指导模型参数调整以最小化误差。 - **KL **:适用于生成对抗网络 (GANs) 或变分自编码器 (VAEs) 中隐空间分布匹配的任务。 - **JS **:相比 KL 更加稳定可靠,尤其适合处理不平衡样本情况下的相似比较场景。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值