数据可视化第六章

本文深入探讨了大数据中的文本可视化技术,包括文本数据在大数据中的应用、网络爬虫提取文本、向量空间模型、主题抽取,以及各种文本内容和关系的可视化方法,如标签云、文档散、主题河流等,提供了丰富的实际案例分析。
摘要由CSDN通过智能技术生成

1

  • 文本数据可视化

 6.1文本数据在大数据中的应用及提取

   6.1.1文本在大数据的应用

标签云技术是深受用户喜爱的展示关键词的重要技术之一,它可有效地从数量巨大、数据类型多样、价值密度低的大量数据中快速提取有用信息。

一般把文本的理解分成三级:词汇级、语法级和语义级

文本数据类别一般包括单文本、文档集合和时序文本数据三大类。

6.1.2使用网络爬虫提取文本数据

网络爬虫,也称网络蜘蛛。网络爬虫就是根据网页的地址(url)来寻找网页的。

python爬虫架构主要有调度器、URL管理器、网页下载器、网页解析器、数据库。

6.2文本信息分析

 6.2.1 向量空间模型

1、词袋模型

2、TF-IDF

  6.22 主题抽取

文本主题的抽取算法大致可分为两类:基于贝叶斯的概率模型和基于矩阵分解的非概率模型

6.3文本数据可视化

6.3.1 文本内容可视化

 1.关键词

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值