区分on-policy 和 off-policy

————"Deep Reinforcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications"

[114] Tsitsiklis, J. N., and Van Roy, B. (1997). Analysis of temporal-diffference learning with function approximation. In Advances in Neural Information Processing Systems (pp. 1075-1081).

在DRL中,一个常用的机制是建立soft-update的目标q网络,在程序中通常命名为 q_network_bar或q_network_target,该网络参数更新被滞后地赋予q_network的参数,该操作的目的实现 on-policy 下more stable的作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值