论文链接:SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
1、图信号处理面临的挑战
- Challenge1 : Shifting
加权图是不规则结构,缺少平移不变的平移概念。 f(t-n)不再有意义。因此不能直接应用卷积。
特殊情况:环形图,其拉普拉斯算子是循环的,因此这类图是高度规则的。 - Challenge2 : Transform
图的频谱是离散的且不规则地间隔开。 对于实数信号而言,可以通过乘以负数指数对应到傅里叶域内。因此对于图而言,也需要一个频域转换规则,否则无法进行卷积。 - Challenge3 : Downsampling
对于数值离散信号,我们很容易理解下采样,即对于一个样值序列间隔几个样值取样一次,该操作对于池化必不可少,但是对于图而言,它的下采样怎么定义? - Challenge4 : Multiresolution
除了下采样概念,还需要生成图的较粗略版本的方法,以实现多分辨率。 粗略版本应捕获嵌入在原始图中的结构特性。
2.数学基础——Graph Laplacian
- D:对角矩阵,其对角线上第i个值 d i d_i di等于与图中顶点 v i v_i vi相连的所有边的加权和。
- combinatorial graph Laplacian / non-normalized graph Laplacian: L = D − W L=D-W L=D−W
- normalized graph Laplacian / symmetric normalized Laplacian:
L ~ = D − 1 2 L D − 1 2 = I N − D − 1 2 W D − 1 2 \tilde{L} =D^{-\frac{1}{2} } LD^{-\frac{1}{2} }=I_N-D^{-\frac{1}{2} } WD^{-\frac{1}{2} } L~=D−21LD−21=IN−D−21WD−21 - asymmetric graph Laplacian: L a = I N − P L_a=I_N-P La=IN−P,其中 P = D − 1 W P=D^{-1} W P=D−1W是随机游走矩阵。
3. GCN
关于图的研究路线可以从顶点域和频域两方面开展,我们在这里介绍的GCN是一种采用频域方法对图信号进行处理,采用频域相乘代替CNN网络中的实域卷积进行SGC操作。
既然我们面临挑战1和2,容易想到我们可以思考在傅里叶域内进行graph的操作。考虑图
G
=
V
,
ε
,
W
\mathcal{ G}={\mathcal{V},{\LARGE \varepsilon } ,\mathcal{W} }
G=V,ε,W,想要实现卷积层功能,如上图所属,我们希望隐层传递关系为信号
×
\times
×滤波器:
y
=
g
θ
(
L
)
x
y=g_\theta(L)x
y=gθ(L)x。
回顾:Laplacian可以通过正交的特征向量对角化。
L
=
U
Λ
U
T
L=U\Lambda U^{T}
L=UΛUT
从而:
y
=
U
g
θ
(
Λ
)
U
T
x
y=Ug_\theta(\Lambda) U^{T}x
y=Ugθ(Λ)UTx
但是,上述隐含层形式计算复杂度高
O
(
n
2
)
O(n^2)
O(n2),并且L的特征分解也很麻烦。为此,采用截断切比雪夫多项式展开近似
g
θ
(
L
)
g_\theta(L)
gθ(L)。
y
=
g
θ
(
L
)
x
≈
∑
0
K
−
1
θ
k
T
k
(
L
~
)
x
≈
θ
0
x
+
θ
1
(
L
−
I
N
)
x
y=g_{\theta}(L)x\approx \sum_{0}^{K-1} \theta_kT_k(\tilde{L} ) x\approx\theta _{0} x+\theta _{1}(L-I_{N} )x
y=gθ(L)x≈∑0K−1θkTk(L~)x≈θ0x+θ1(L−IN)x
令
θ
∗
=
θ
0
=
−
θ
1
\theta ^{*} =\theta_0=-\theta_1
θ∗=θ0=−θ1:
y
=
θ
∗
L
~
x
≈
θ
∗
(
I
N
+
D
−
1
2
A
D
−
1
2
)
x
y=\theta ^{*} \tilde{L} x\approx \theta ^{*} (I_N+D^{-\frac{1}{2}}AD^{-\frac{1}{2}} )x
y=θ∗L~x≈θ∗(IN+D−21AD−21)x
令
A
~
=
A
+
I
N
,
D
~
i
i
=
∑
j
A
~
i
j
,
Θ
∈
R
C
×
F
是
滤
波
器
参
数
\tilde{A} =A+I_N,\tilde{D} _{ii}= {\textstyle \sum_{}^{j}\tilde{A} _{ij}} ,\Theta \in \mathbb{R} ^{C\times F}是滤波器参数
A~=A+IN,D~ii=∑jA~ij,Θ∈RC×F是滤波器参数,从而得到卷积的信号矩阵:
Z
=
D
~
−
1
2
A
~
D
~
−
1
2
X
Θ
Z=\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta
Z=D~−21A~D~−21XΘ