GCN总结

论文链接:SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

1、图信号处理面临的挑战

  • Challenge1 : Shifting
    加权图是不规则结构,缺少平移不变的平移概念。 f(t-n)不再有意义。因此不能直接应用卷积。
    特殊情况:环形图,其拉普拉斯算子是循环的,因此这类图是高度规则的。
  • Challenge2 : Transform
    图的频谱是离散的且不规则地间隔开。 对于实数信号而言,可以通过乘以负数指数对应到傅里叶域内。因此对于图而言,也需要一个频域转换规则,否则无法进行卷积。
  • Challenge3 : Downsampling
    对于数值离散信号,我们很容易理解下采样,即对于一个样值序列间隔几个样值取样一次,该操作对于池化必不可少,但是对于图而言,它的下采样怎么定义?
  • Challenge4 : Multiresolution
    除了下采样概念,还需要生成图的较粗略版本的方法,以实现多分辨率。 粗略版本应捕获嵌入在原始图中的结构特性。

2.数学基础——Graph Laplacian

  • D:对角矩阵,其对角线上第i个值 d i d_i di等于与图中顶点 v i v_i vi相连的所有边的加权和。
  • combinatorial graph Laplacian / non-normalized graph Laplacian: L = D − W L=D-W L=DW
  • normalized graph Laplacian / symmetric normalized Laplacian:
    L ~ = D − 1 2 L D − 1 2 = I N − D − 1 2 W D − 1 2 \tilde{L} =D^{-\frac{1}{2} } LD^{-\frac{1}{2} }=I_N-D^{-\frac{1}{2} } WD^{-\frac{1}{2} } L~=D21LD21=IND21WD21
  • asymmetric graph Laplacian: L a = I N − P L_a=I_N-P La=INP,其中 P = D − 1 W P=D^{-1} W P=D1W是随机游走矩阵。

3. GCN

在这里插入图片描述
关于图的研究路线可以从顶点域和频域两方面开展,我们在这里介绍的GCN是一种采用频域方法对图信号进行处理,采用频域相乘代替CNN网络中的实域卷积进行SGC操作。

在这里插入图片描述

既然我们面临挑战1和2,容易想到我们可以思考在傅里叶域内进行graph的操作。考虑图 G = V , ε , W \mathcal{ G}={\mathcal{V},{\LARGE \varepsilon } ,\mathcal{W} } G=V,ε,W,想要实现卷积层功能,如上图所属,我们希望隐层传递关系为信号 × \times ×滤波器: y = g θ ( L ) x y=g_\theta(L)x y=gθ(L)x
回顾:Laplacian可以通过正交的特征向量对角化。 L = U Λ U T L=U\Lambda U^{T} L=UΛUT
从而: y = U g θ ( Λ ) U T x y=Ug_\theta(\Lambda) U^{T}x y=Ugθ(Λ)UTx
但是,上述隐含层形式计算复杂度高 O ( n 2 ) O(n^2) O(n2),并且L的特征分解也很麻烦。为此,采用截断切比雪夫多项式展开近似 g θ ( L ) g_\theta(L) gθ(L)
y = g θ ( L ) x ≈ ∑ 0 K − 1 θ k T k ( L ~ ) x ≈ θ 0 x + θ 1 ( L − I N ) x y=g_{\theta}(L)x\approx \sum_{0}^{K-1} \theta_kT_k(\tilde{L} ) x\approx\theta _{0} x+\theta _{1}(L-I_{N} )x y=gθ(L)x0K1θkTk(L~)xθ0x+θ1(LIN)x
θ ∗ = θ 0 = − θ 1 \theta ^{*} =\theta_0=-\theta_1 θ=θ0=θ1:
y = θ ∗ L ~ x ≈ θ ∗ ( I N + D − 1 2 A D − 1 2 ) x y=\theta ^{*} \tilde{L} x\approx \theta ^{*} (I_N+D^{-\frac{1}{2}}AD^{-\frac{1}{2}} )x y=θL~xθ(IN+D21AD21)x
A ~ = A + I N , D ~ i i = ∑ j A ~ i j , Θ ∈ R C × F 是 滤 波 器 参 数 \tilde{A} =A+I_N,\tilde{D} _{ii}= {\textstyle \sum_{}^{j}\tilde{A} _{ij}} ,\Theta \in \mathbb{R} ^{C\times F}是滤波器参数 A~=A+IN,D~ii=jA~ij,ΘRC×F,从而得到卷积的信号矩阵:
Z = D ~ − 1 2 A ~ D ~ − 1 2 X Θ Z=\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta Z=D~21A~D~21XΘ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值