关于量子力学的我们胡思乱想(二)维度、一杯水、真空和以太(1)

关于量子力学的我们胡思乱想(二)维度、一杯水、真空和以太
我想从一些例子开始思考。

我们来尝试换一个方向去思考关于真空和以太,以及如果以太存在,它是从哪来的?如果以太存在,我们能不能创造一个没有以太的超真空?
换言之,我们能探测到以太吗?
以太,之以会不会还有以太。

光速为什么有极限呢?
为什么广义相对论里面,没有质量的物体,必须以光速运行呢?

===========================================

1。 关于迈克尔逊。莫雷实验。证明的以太不存在。

这一段,是相当扯蛋的。大家还可以回去找找当年的课本。

这个实现,在开始前,先下了一个结论,说以太是流动的,是有方向的,所以,一定会光速造成影响。

我们现在知道,这完全是极为可笑的假设。以太为什么要流动?它如果是场呢?如果流动,就会导致光速变化?

可是,如果以太就是引力场呢?就是希格斯场呢?我们本身就身在其中啊,我们也会随着以太的波动而波动。因为我们就飘在希格斯场中啊!你怎么可能还能探测到光被影响了呢?你的实验设备的质量,我们身体里的质子,都飘在那。

换言之,你根据就活在以太的格子里。以及的变化,可以说,在另一个维度,另一个我们无法控制和感知的维度。

但是,就是这么一个胡乱定下的假定之下,搞了个迈克尔逊。莫雷实验,证明以太的各向同性。可是,人们却得出,以太不存在这样一个结论。以及光速不变这个结论。

这也是非常扯蛋的事。

我们应当研究下,为什么光的速度是有极限的=c。而且所有质量为零的粒子,都将以c运行于某个场中。

我们不能肯定那是不是引力所在的希格斯场,但可以肯定,如果没有这个场,光的速度,要么更快,要么无法行动。

2。 关于光速不变

我们普通人,很难研究光。但我以前是搞过声学的。

有一名有人性的科学家,在前些年,发现,可以用声音来模拟广义相对论中的光。

因为光速在不同的介质中的速度是不同的。

光也是波,在这一点,也不能例外。

但,想想声波,它的特点是,在密度更高的物质中,运行的速度更快。因为声波的传波媒介是分子。

那么回到光波,如果它与声波一样呢?是什么在传播它呢?

当然,有人说,如果按麦克斯韦方程组,不需要媒介。因为变化的电场产生变化的磁场。但我们还是知道,光在不能的介质中的速度是不同的,真空只是极限而己。

那么还是回到原始的问题,“真空”究竟是什么?声波在密度更高的物质中,速度更快,光波则相反?这可能吗?我不认为这可能。

只能说,真空更加致密。致密到光子可以以c的速度运行。

因为,我认为,所谓的电磁场,还是一种实在,不会凭空存在。变化的电场或变化的磁场,也是电场或磁场,不可能无媒介而向外扩张。

引力,可以引入非常微小,最接近于普朗克度量的希格斯场和希格斯场粒子,电磁场,后出现于引力,比引力维度更低阶的,难道反而可以凭空存在吗???

要么,电磁力也与引力一样,基于希格斯场相互作用,要么电磁力,有更高阶的以太,来承载电磁力。

科学家,已认可,我们不可能真正“抓"到希格斯场,可为什么在电磁力这里就这么有信心,可以没有以太呢?

3。 没有以太的后果,是什么呢?

是我们普通人,再也无法用统一的思维模式去理解这个宇宙。

本来,我们人与人之间的关系,可以用礼物或利益的交换来解释。

粒子与粒子之间的力,是它们之间交换某种力子,形成了关系。

而且,不论是人,还是粒子,总得需要中间的媒介,穿越时空,才能将礼物送达,这很好理解,

可你现在说没有以太,人们全都懵逼了。

科学家们,开心了,目的就是让你们不懂对吧。这样,我才能胡说八道,不是一道,是八道。这回他们要搞大统一的那劲头他们倒忘了。为什么要给电磁力特殊的待遇?不是搞大统一吗?

4。 到底我们能不能”抓“到以太?或者说,我们的真空,真的是真空吗?

有一个故事,一名乞丐到一个地主家吃饭,地主故意逗他,总是上一种吃的以后,在得到乞丐饱了的响应后,再上更好吃的;地主最后问乞丐,想要一个答案。乞丐没有说话,反而是要到一个容器,先放入石头,然后问地主,是不是满了,地主说满了;然后又放入小一些的石子,又问是不是满了;得到肯定答复后,又加入沙子,后来是水。地主最后也是垭口无言。

我们如果想要做一个容器,去捕获以太,可是我们的容器,只是网眼巨大的筛子,如何能装水呢?

但你不能因为这种结果,明明是竹篮子打水一场空,但却说水不存在。

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值