LDA主题模型学习笔记3:变分推断(E-step)

本文介绍了LDA主题模型中,如何利用变分推断进行E-step的优化过程。通过Jensen不等式,找到了log似然函数的下界,并通过拉格朗日乘数法求解变分参数,得到参数更新式。最终,通过迭代求得最优参数,实现主题模型的推断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       上文《LDA主题模型学习笔记:求解隐变量和模型参数(EM思想)》中在E-step我们要用变分推断求解如下的优化问题:

(γ,ϕ)=argmin(γ,ϕ)D(q(θ,z|γ,ϕ)||p(θ,z|w,α,β))

而这个KL距离是如下形式,这个很难直接最小化。

D(q(θ,z|γ,ϕ)||p(θ,z|w,α,β))=zq(θ,z|γ,ϕ)logq(θ,z|γ,ϕ)p(θ
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值