[caffe笔记006]:caffe中的softmax层推导

1. SoftmaxParameter

  • engine
    • CAFFE = 1
    • CUDNN = 2
  • axis
    沿着第几维做softmax,可以是正数(正序)和负数(倒序)
// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer
message SoftmaxParameter {
  enum Engine {
    DEFAULT = 0;
    CAFFE = 1;
    CUDNN = 2;
  }
  optional Engine engine = 1 [default = DEFAULT];

  // The axis along which to perform the softmax -- may be negative to index
  // from the end (e.g., -1 for the last axis).
  // Any other axes will be evaluated as independent softmaxes.
  optional int32 axis = 2 [default = 1];
}

2. 结构

caffe里的softmax层值关注softmax函数本身,是一个二部图。对于输入

zi(i=1,,k),

其对应输出为
ai=ezij=1kezj.

  • bottom
    如果[N C H W]的矩阵,N为batchsize,C为类别数,HxW被称作spatial dimention,此时 zi 就是第二维上的元素
  • top
    [N C H W]的矩阵,为对应输出

3. 正向传播

计算过程
Step1: 计算输入最大值

z=max{zi}

Step2: 减去最大值
zi=ziz

Step3: 求指数
zi=ezi

Step4: 求和
zsum=i=1kezi

Step5: softmax
zi=zizsum

代码

template <typename Dtype>
void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  Dtype* scale_data = scale_.mutable_cpu_data();
  // channles对应类别的数目
  int channels = bottom[0]->shape(softmax_axis_);
  int dim = bottom[0]->count() / outer_num_;
  // 对top进行初始化,初始化为bottom的值
  caffe_copy(bottom[0]->count(), bottom_data, top_data);
  // We need to subtract the max to avoid numerical issues, compute the exp,
  // and then normalize.
  // 对outer_num_个数据依次处理
  for (int i = 0; i < outer_num_; ++i) {
    // 初始化scale_data为第i个数据,并找到softmax对应维度上的数据最大值
    // Step1:
    // initialize scale_data to the first plane
    caffe_copy(inner_num_, bottom_data + i * dim, scale_data);
    for (int j = 0; j < channels; j++) {
      for (int k = 0; k < inner_num_; k++) {
        scale_data[k] = std::max(scale_data[k],
            bottom_data[i * dim + j * inner_num_ + k]);
      }
    }
    // subtraction, Step2:
    caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_,
        1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data);
    // exponentiation, Step3:
    caffe_exp<Dtype>(dim, top_data, top_data);
    // sum after exp, Step4:
    caffe_cpu_gemv<Dtype>(CblasTrans, channels, inner_num_, 1.,
        top_data, sum_multiplier_.cpu_data(), 0., scale_data);
    // division, Step5:
    for (int j = 0; j < channels; j++) {
      caffe_div(inner_num_, top_data, scale_data, top_data);
      top_data += inner_num_;
    }
  }
}

4. 反向传播

计算过程
Step1: 求top_data和top_diff内积
Step2: 求差值,对应推导过程 (lailaa)
Step3: 相乘,求偏导

推导过程

lz=laaz

其中: la=topdiff a=topdata
而:
aizj=(ezikezk)zj

ij
aizj=eziezj(kezk)2=aiaj

i=j 时:
aizj=ezikezkeziezj(kezk)2=ajajaj

可以推出:
lzj=laazj=ilaiaizj=(laa)aj+lajaj=(lajlaa)aj

代码

template <typename Dtype>
void SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  const Dtype* top_diff = top[0]->cpu_diff();
  const Dtype* top_data = top[0]->cpu_data();
  Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
  Dtype* scale_data = scale_.mutable_cpu_data();
  int channels = top[0]->shape(softmax_axis_);
  int dim = top[0]->count() / outer_num_;
  caffe_copy(top[0]->count(), top_diff, bottom_diff);
  for (int i = 0; i < outer_num_; ++i) {
    // compute dot(top_diff, top_data) and subtract them from the bottom diff, Step1:
    for (int k = 0; k < inner_num_; ++k) {
      scale_data[k] = caffe_cpu_strided_dot<Dtype>(channels,
          bottom_diff + i * dim + k, inner_num_,
          top_data + i * dim + k, inner_num_);
    }
    // subtraction, Step2:
    caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1,
        -1., sum_multiplier_.cpu_data(), scale_data, 1., bottom_diff + i * dim);
  }
  // elementwise multiplication, Step3:
  caffe_mul(top[0]->count(), bottom_diff, top_data, bottom_diff);
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值