二分查找的思想就是每次将区间变成原来的一半,不断的将区间缩小,来逼近最后的值。现在来看一个利用二分查找来求解方程的根的问题。
1、问题描述
求下面方程的一个根:f(x) = x3-5x2+10x-80 = 0
若求出的根是a,则要求|f(a)| <= 10-6
2、问题分析
解法:对f(x)求导,得f’(x)=3x2-10x+10。由一元二次方程求根公式知方程f’(x)= 0 无解,因此f’(x)恒大于0。故f(x)是单调递增的。易知f(0) < 0且f(100)>0,所以区间[0,100]内必然有且只有一个根。由于f(x)在[0,100]内是单调的,所以可以用二分的办法在区间[0,100]中寻找根。
#include<iostream>
using namespace std;
#define EPS 1e-6
double f(double x) { return x*x*x - 5 * x*x + 10 * x - 80; }
int main()
{
double left = 0, right = 100;
double mid = left + (right - left)/2;
double y = f(mid);
int times = 1;
while (fabs(y)>EPS)
{
if (y < 0)
left = mid;
else
right = mid;
mid = left + (right - left)/2;
y = f(mid);
times++;
}
cout << "time:" << times << "\t answer: " << mid << endl;
return 0;
}