图像分割之(四)OpenCV的GrabCut函数使用和源码解读
上一文对GrabCut做了一个了解。OpenCV中的GrabCut算法是依据《"GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts》这篇文章来实现的。现在我对源码做了些注释,以便我们更深入的了解该算法。一直觉得论文和代码是有比较大的差别的,个人觉得脱离代码看论文,最多能看懂70%,剩下20%或者更多就需要通过阅读代码来获得了,那还有10%就和每个人的基础和知识储备相挂钩了。
接触时间有限,若有错误,还望各位前辈指正,谢谢。原论文的一些浅解见上一博文:
http://blog.csdn.net/zouxy09/article/details/8534954
一、GrabCut函数使用
在OpenCV的源码目录的samples的文件夹下,有grabCut的使用例程,请参考:
opencv\samples\cpp\grabcut.cpp。
而grabCut函数的API说明如下:
void cv::grabCut( InputArray _img, InputOutputArray _mask, Rect rect,
InputOutputArray _bgdModel, InputOutputArray _fgdModel,
int iterCount, int mode )
/*
****参数说明:
img——待分割的源图像,必须是8位3通道(CV_8UC3)图像,在处理的过程中不会被修改;
mask——掩码图像,如果使用掩码进行初始化,那么mask保存初始化掩码信息;在执行分割的时候,也可以将用户交互所设定的前景与背景保存到mask中,然后再传入grabCut函数;在处理结束之后,mask中会保存结果。mask只能取以下四种值:
GCD_BGD(=0),背景;
GCD_FGD(=1),前景;
GCD_PR_BGD(=2),可能的背景;
GCD_PR_FGD(=3),可能的前景。
如果没有手工标记GCD_BGD或者GCD_FGD,那么结果只会有GCD_PR_BGD或GCD_PR_FGD;
rect——用于限定需要进行分割的图像范围,只有该矩形窗口内的图像部分才被处理;
bgdModel——背景模型,如果为null,函数内部会自动创建一个bgdModel;bgdModel必须是单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
fgdModel——前景模型,如果为null,函数内部会自动创建一个fgdModel;fgdModel必须是单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
iterCount——迭代次数,必须大于0;
mode——用于指示grabCut函数进行什么操作,可选的值有:
GC_INIT_WITH_RECT(=0),用矩形窗初始化GrabCut;
GC_INIT_WITH_MASK(=1),用掩码图像初始化GrabCut;
GC_EVAL(=2),执行分割。
*/
二、GrabCut源码解读
其中源码包含了gcgraph.hpp这个构建图和max flow/min cut算法的实现文件,这个文件暂时没有解读,后面再更新了。
- /*M///
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "precomp.hpp"
- #include "gcgraph.hpp"
- #include <limits>
- using namespace cv;
- /*
- This is implementation of image segmentation algorithm GrabCut described in
- "GrabCut — Interactive Foreground Extraction using Iterated Graph Cuts".
- Carsten Rother, Vladimir Kolmogorov, Andrew Blake.
- */
- /*
- GMM - Gaussian Mixture Model
- */
- class GMM
- {
- public:
- static const int componentsCount = 5;
- GMM( Mat& _model );
- double operator()( const Vec3d color ) const;
- double operator()( int ci, const Vec3d color ) const;
- int whichComponent( const Vec3d color ) const;
- void initLearning();
- void addSample( int ci, const Vec3d color );
- void endLearning();
- private:
- void calcInverseCovAndDeterm( int ci );
- Mat model;
- double* coefs;
- double* mean;
- double* cov;
- double inverseCovs[componentsCount][3][3]; //协方差的逆矩阵
- double covDeterms[componentsCount]; //协方差的行列式
- double sums[componentsCount][3];
- double prods[componentsCount][3][3];
- int sampleCounts[componentsCount];
- int totalSampleCount;
- };
- //背景和前景各有一个对应的GMM(混合高斯模型)
- GMM::GMM( Mat& _model )
- {
- //一个像素的(唯一对应)高斯模型的参数个数或者说一个高斯模型的参数个数
- //一个像素RGB三个通道值,故3个均值,3*3个协方差,共用一个权值
- const int modelSize = 3/*mean*/ + 9/*covariance*/ + 1/*component weight*/;
- if( _model.empty() )
- {
- //一个GMM共有componentsCount个高斯模型,一个高斯模型有modelSize个模型参数
- _model.create( 1, modelSize*componentsCount, CV_64FC1 );
- _model.setTo(Scalar(0));
- }
- else if( (_model.type() != CV_64FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) )
- CV_Error( CV_StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" );
- model = _model;
- //注意这些模型参数的存储方式:先排完componentsCount个coefs,再3*componentsCount个mean。
- //再3*3*componentsCount个cov。
- coefs = model.ptr<double>(0); //GMM的每个像素的高斯模型的权值变量起始存储指针
- mean = coefs + componentsCount; //均值变量起始存储指针
- cov = mean + 3*componentsCount; //协方差变量起始存储指针
- for( int ci = 0; ci < componentsCount; ci++ )
- if( coefs[ci] > 0 )
- //计算GMM中第ci个高斯模型的协方差的逆Inverse和行列式Determinant
- //为了后面计算每个像素属于该高斯模型的概率(也就是数据能量项)
- calcInverseCovAndDeterm( ci );
- }
- //计算一个像素(由color=(B,G,R)三维double型向量来表示)属于这个GMM混合高斯模型的概率。
- //也就是把这个像素像素属于componentsCount个高斯模型的概率与对应的权值相乘再相加,
- //具体见论文的公式(10)。结果从res返回。
- //这个相当于计算Gibbs能量的第一个能量项(取负后)。
- double GMM::operator()( const Vec3d color ) const
- {
- double res = 0;
- for( int ci = 0; ci < componentsCount; ci++ )
- res += coefs[ci] * (*this)(ci, color );
- return res;
- }
- //计算一个像素(由color=(B,G,R)三维double型向量来表示)属于第ci个高斯模型的概率。
- //具体过程,即高阶的高斯密度模型计算式,具体见论文的公式(10)。结果从res返回
- double GMM::operator()( int ci, const Vec3d color ) const
- {
- double res = 0;
- if( coefs[ci] > 0 )
- {
- CV_Assert( covDeterms[ci] > std::numeric_limits<double>::epsilon() );
- Vec3d diff = color;
- double* m = mean + 3*ci;
- diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2];
- double mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0])
- + diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1])
- + diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]);
- res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult);
- }
- return res;
- }
- //返回这个像素最有可能属于GMM中的哪个高斯模型(概率最大的那个)
- int GMM::whichComponent( const Vec3d color ) const
- {
- int k = 0;
- double max = 0;
- for( int ci = 0; ci < componentsCount; ci++ )
- {
- double p = (*this)( ci, color );
- if( p > max )
- {
- k = ci; //找到概率最大的那个,或者说计算结果最大的那个
- max = p;
- }
- }
- return k;
- }
- //GMM参数学习前的初始化,主要是对要求和的变量置零
- void GMM::initLearning()
- {
- for( int ci = 0; ci < componentsCount; ci++)
- {
- sums[ci][0] = sums[ci][1] = sums[ci][2] = 0;
- prods[ci][0][0] = prods[ci][0][1] = prods[ci][0][2] = 0;
- prods[ci][1][0] = prods[ci][1][1] = prods[ci][1][2] = 0;
- prods[ci][2][0] = prods[ci][2][1] = prods[ci][2][2] = 0;
- sampleCounts[ci] = 0;
- }
- totalSampleCount = 0;
- }
- //增加样本,即为前景或者背景GMM的第ci个高斯模型的像素集(这个像素集是来用估
- //计计算这个高斯模型的参数的)增加样本像素。计算加入color这个像素后,像素集
- //中所有像素的RGB三个通道的和sums(用来计算均值),还有它的prods(用来计算协方差),
- //并且记录这个像素集的像素个数和总的像素个数(用来计算这个高斯模型的权值)。
- void GMM::addSample( int ci, const Vec3d color )
- {
- sums[ci][0] += color[0]; sums[ci][1] += color[1]; sums[ci][2] += color[2];
- prods[ci][0][0] += color[0]*color[0]; prods[ci][0][1] += color[0]*color[1]; prods[ci][0][2] += color[0]*color[2];
- prods[ci][1][0] += color[1]*color[0]; prods[ci][1][1] += color[1]*color[1]; prods[ci][1][2] += color[1]*color[2];
- prods[ci][2][0] += color[2]*color[0]; prods[ci][2][1] += color[2]*color[1]; prods[ci][2][2] += color[2]*color[2];
- sampleCounts[ci]++;
- totalSampleCount++;
- }
- //从图像数据中学习GMM的参数:每一个高斯分量的权值、均值和协方差矩阵;
- //这里相当于论文中“Iterative minimisation”的step 2
- void GMM::endLearning()
- {
- const double variance = 0.01;
- for( int ci = 0; ci < componentsCount; ci++ )
- {
- int n = sampleCounts[ci]; //第ci个高斯模型的样本像素个数
- if( n == 0 )
- coefs[ci] = 0;
- else
- {
- //计算第ci个高斯模型的权值系数
- coefs[ci] = (double)n/totalSampleCount;
- //计算第ci个高斯模型的均值
- double* m = mean + 3*ci;
- m[0] = sums[ci][0]/n; m[1] = sums[ci][1]/n; m[2] = sums[ci][2]/n;
- //计算第ci个高斯模型的协方差
- double* c = cov + 9*ci;
- c[0] = prods[ci][0][0]/n - m[0]*m[0]; c[1] = prods[ci][0][1]/n - m[0]*m[1]; c[2] = prods[ci][0][2]/n - m[0]*m[2];
- c[3] = prods[ci][1][0]/n - m[1]*m[0]; c[4] = prods[ci][1][1]/n - m[1]*m[1]; c[5] = prods[ci][1][2]/n - m[1]*m[2];
- c[6] = prods[ci][2][0]/n - m[2]*m[0]; c[7] = prods[ci][2][1]/n - m[2]*m[1]; c[8] = prods[ci][2][2]/n - m[2]*m[2];
- //计算第ci个高斯模型的协方差的行列式
- double dtrm = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]);
- if( dtrm <= std::numeric_limits<double>::epsilon() )
- {
- //相当于如果行列式小于等于0,(对角线元素)增加白噪声,避免其变
- //为退化(降秩)协方差矩阵(不存在逆矩阵,但后面的计算需要计算逆矩阵)。
- // Adds the white noise to avoid singular covariance matrix.
- c[0] += variance;
- c[4] += variance;
- c[8] += variance;
- }
- //计算第ci个高斯模型的协方差的逆Inverse和行列式Determinant
- calcInverseCovAndDeterm(ci);
- }
- }
- }
- //计算协方差的逆Inverse和行列式Determinant
- void GMM::calcInverseCovAndDeterm( int ci )
- {
- if( coefs[ci] > 0 )
- {
- //取第ci个高斯模型的协方差的起始指针
- double *c = cov + 9*ci;
- double dtrm =
- covDeterms[ci] = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6])
- + c[2]*(c[3]*c[7]-c[4]*c[6]);
- //在C++中,每一种内置的数据类型都拥有不同的属性, 使用<limits>库可以获
- //得这些基本数据类型的数值属性。因为浮点算法的截断,所以使得,当a=2,
- //b=3时 10*a/b == 20/b不成立。那怎么办呢?
- //这个小正数(epsilon)常量就来了,小正数通常为可用给定数据类型的
- //大于1的最小值与1之差来表示。若dtrm结果不大于小正数,那么它几乎为零。
- //所以下式保证dtrm>0,即行列式的计算正确(协方差对称正定,故行列式大于0)。
- CV_Assert( dtrm > std::numeric_limits<double>::epsilon() );
- //三阶方阵的求逆
- inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm;
- inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm;
- inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm;
- inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm;
- inverseCovs[ci][1][1] = (c[0]*c[8] - c[2]*c[6]) / dtrm;
- inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm;
- inverseCovs[ci][0][2] = (c[1]*c[5] - c[2]*c[4]) / dtrm;
- inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm;
- inverseCovs[ci][2][2] = (c[0]*c[4] - c[1]*c[3]) / dtrm;
- }
- }
- //计算beta,也就是Gibbs能量项中的第二项(平滑项)中的指数项的beta,用来调整
- //高或者低对比度时,两个邻域像素的差别的影响的,例如在低对比度时,两个邻域
- //像素的差别可能就会比较小,这时候需要乘以一个较大的beta来放大这个差别,
- //在高对比度时,则需要缩小本身就比较大的差别。
- //所以我们需要分析整幅图像的对比度来确定参数beta,具体的见论文公式(5)。
- /*
- Calculate beta - parameter of GrabCut algorithm.
- beta = 1/(2*avg(sqr(||color[i] - color[j]||)))
- */
- static double calcBeta( const Mat& img )
- {
- double beta = 0;
- for( int y = 0; y < img.rows; y++ )
- {
- for( int x = 0; x < img.cols; x++ )
- {
- //计算四个方向邻域两像素的差别,也就是欧式距离或者说二阶范数
- //(当所有像素都算完后,就相当于计算八邻域的像素差了)
- Vec3d color = img.at<Vec3b>(y,x);
- if( x>0 ) // left >0的判断是为了避免在图像边界的时候还计算,导致越界
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
- beta += diff.dot(diff); //矩阵的点乘,也就是各个元素平方的和
- }
- if( y>0 && x>0 ) // upleft
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
- beta += diff.dot(diff);
- }
- if( y>0 ) // up
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
- beta += diff.dot(diff);
- }
- if( y>0 && x<img.cols-1) // upright
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
- beta += diff.dot(diff);
- }
- }
- }
- if( beta <= std::numeric_limits<double>::epsilon() )
- beta = 0;
- else
- beta = 1.f / (2 * beta/(4*img.cols*img.rows - 3*img.cols - 3*img.rows + 2) ); //论文公式(5)
- return beta;
- }
- //计算图每个非端点顶点(也就是每个像素作为图的一个顶点,不包括源点s和汇点t)与邻域顶点
- //的边的权值。由于是无向图,我们计算的是八邻域,那么对于一个顶点,我们计算四个方向就行,
- //在其他的顶点计算的时候,会把剩余那四个方向的权值计算出来。这样整个图算完后,每个顶点
- //与八邻域的顶点的边的权值就都计算出来了。
- //这个相当于计算Gibbs能量的第二个能量项(平滑项),具体见论文中公式(4)
- /*
- Calculate weights of noterminal vertices of graph.
- beta and gamma - parameters of GrabCut algorithm.
- */
- static void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW,
- Mat& uprightW, double beta, double gamma )
- {
- //gammaDivSqrt2相当于公式(4)中的gamma * dis(i,j)^(-1),那么可以知道,
- //当i和j是垂直或者水平关系时,dis(i,j)=1,当是对角关系时,dis(i,j)=sqrt(2.0f)。
- //具体计算时,看下面就明白了
- const double gammaDivSqrt2 = gamma / std::sqrt(2.0f);
- //每个方向的边的权值通过一个和图大小相等的Mat来保存
- leftW.create( img.rows, img.cols, CV_64FC1 );
- upleftW.create( img.rows, img.cols, CV_64FC1 );
- upW.create( img.rows, img.cols, CV_64FC1 );
- uprightW.create( img.rows, img.cols, CV_64FC1 );
- for( int y = 0; y < img.rows; y++ )
- {
- for( int x = 0; x < img.cols; x++ )
- {
- Vec3d color = img.at<Vec3b>(y,x);
- if( x-1>=0 ) // left //避免图的边界
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
- leftW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
- }
- else
- leftW.at<double>(y,x) = 0;
- if( x-1>=0 && y-1>=0 ) // upleft
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
- upleftW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
- }
- else
- upleftW.at<double>(y,x) = 0;
- if( y-1>=0 ) // up
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
- upW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
- }
- else
- upW.at<double>(y,x) = 0;
- if( x+1<img.cols && y-1>=0 ) // upright
- {
- Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
- uprightW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
- }
- else
- uprightW.at<double>(y,x) = 0;
- }
- }
- }
- //检查mask的正确性。mask为通过用户交互或者程序设定的,它是和图像大小一样的单通道灰度图,
- //每个像素只能取GC_BGD or GC_FGD or GC_PR_BGD or GC_PR_FGD 四种枚举值,分别表示该像素
- //(用户或者程序指定)属于背景、前景、可能为背景或者可能为前景像素。具体的参考:
- //ICCV2001“Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images”
- //Yuri Y. Boykov Marie-Pierre Jolly
- /*
- Check size, type and element values of mask matrix.
- */
- static void checkMask( const Mat& img, const Mat& mask )
- {
- if( mask.empty() )
- CV_Error( CV_StsBadArg, "mask is empty" );
- if( mask.type() != CV_8UC1 )
- CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" );
- if( mask.cols != img.cols || mask.rows != img.rows )
- CV_Error( CV_StsBadArg, "mask must have as many rows and cols as img" );
- for( int y = 0; y < mask.rows; y++ )
- {
- for( int x = 0; x < mask.cols; x++ )
- {
- uchar val = mask.at<uchar>(y,x);
- if( val!=GC_BGD && val!=GC_FGD && val!=GC_PR_BGD && val!=GC_PR_FGD )
- CV_Error( CV_StsBadArg, "mask element value must be equel"
- "GC_BGD or GC_FGD or GC_PR_BGD or GC_PR_FGD" );
- }
- }
- }
- //通过用户框选目标rect来创建mask,rect外的全部作为背景,设置为GC_BGD,
- //rect内的设置为 GC_PR_FGD(可能为前景)
- /*
- Initialize mask using rectangular.
- */
- static void initMaskWithRect( Mat& mask, Size imgSize, Rect rect )
- {
- mask.create( imgSize, CV_8UC1 );
- mask.setTo( GC_BGD );
- rect.x = max(0, rect.x);
- rect.y = max(0, rect.y);
- rect.width = min(rect.width, imgSize.width-rect.x);
- rect.height = min(rect.height, imgSize.height-rect.y);
- (mask(rect)).setTo( Scalar(GC_PR_FGD) );
- }
- //通过k-means算法来初始化背景GMM和前景GMM模型
- /*
- Initialize GMM background and foreground models using kmeans algorithm.
- */
- static void initGMMs( const Mat& img, const Mat& mask, GMM& bgdGMM, GMM& fgdGMM )
- {
- const int kMeansItCount = 10; //迭代次数
- const int kMeansType = KMEANS_PP_CENTERS; //Use kmeans++ center initialization by Arthur and Vassilvitskii
- Mat bgdLabels, fgdLabels; //记录背景和前景的像素样本集中每个像素对应GMM的哪个高斯模型,论文中的kn
- vector<Vec3f> bgdSamples, fgdSamples; //背景和前景的像素样本集
- Point p;
- for( p.y = 0; p.y < img.rows; p.y++ )
- {
- for( p.x = 0; p.x < img.cols; p.x++ )
- {
- //mask中标记为GC_BGD和GC_PR_BGD的像素都作为背景的样本像素
- if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
- bgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
- else // GC_FGD | GC_PR_FGD
- fgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
- }
- }
- CV_Assert( !bgdSamples.empty() && !fgdSamples.empty() );
- //kmeans中参数_bgdSamples为:每行一个样本
- //kmeans的输出为bgdLabels,里面保存的是输入样本集中每一个样本对应的类标签(样本聚为componentsCount类后)
- Mat _bgdSamples( (int)bgdSamples.size(), 3, CV_32FC1, &bgdSamples[0][0] );
- kmeans( _bgdSamples, GMM::componentsCount, bgdLabels,
- TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
- Mat _fgdSamples( (int)fgdSamples.size(), 3, CV_32FC1, &fgdSamples[0][0] );
- kmeans( _fgdSamples, GMM::componentsCount, fgdLabels,
- TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
- //经过上面的步骤后,每个像素所属的高斯模型就确定的了,那么就可以估计GMM中每个高斯模型的参数了。
- bgdGMM.initLearning();
- for( int i = 0; i < (int)bgdSamples.size(); i++ )
- bgdGMM.addSample( bgdLabels.at<int>(i,0), bgdSamples[i] );
- bgdGMM.endLearning();
- fgdGMM.initLearning();
- for( int i = 0; i < (int)fgdSamples.size(); i++ )
- fgdGMM.addSample( fgdLabels.at<int>(i,0), fgdSamples[i] );
- fgdGMM.endLearning();
- }
- //论文中:迭代最小化算法step 1:为每个像素分配GMM中所属的高斯模型,kn保存在Mat compIdxs中
- /*
- Assign GMMs components for each pixel.
- */
- static void assignGMMsComponents( const Mat& img, const Mat& mask, const GMM& bgdGMM,
- const GMM& fgdGMM, Mat& compIdxs )
- {
- Point p;
- for( p.y = 0; p.y < img.rows; p.y++ )
- {
- for( p.x = 0; p.x < img.cols; p.x++ )
- {
- Vec3d color = img.at<Vec3b>(p);
- //通过mask来判断该像素属于背景像素还是前景像素,再判断它属于前景或者背景GMM中的哪个高斯分量
- compIdxs.at<int>(p) = mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD ?
- bgdGMM.whichComponent(color) : fgdGMM.whichComponent(color);
- }
- }
- }
- //论文中:迭代最小化算法step 2:从每个高斯模型的像素样本集中学习每个高斯模型的参数
- /*
- Learn GMMs parameters.
- */
- static void learnGMMs( const Mat& img, const Mat& mask, const Mat& compIdxs, GMM& bgdGMM, GMM& fgdGMM )
- {
- bgdGMM.initLearning();
- fgdGMM.initLearning();
- Point p;
- for( int ci = 0; ci < GMM::componentsCount; ci++ )
- {
- for( p.y = 0; p.y < img.rows; p.y++ )
- {
- for( p.x = 0; p.x < img.cols; p.x++ )
- {
- if( compIdxs.at<int>(p) == ci )
- {
- if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
- bgdGMM.addSample( ci, img.at<Vec3b>(p) );
- else
- fgdGMM.addSample( ci, img.at<Vec3b>(p) );
- }
- }
- }
- }
- bgdGMM.endLearning();
- fgdGMM.endLearning();
- }
- //通过计算得到的能量项构建图,图的顶点为像素点,图的边由两部分构成,
- //一类边是:每个顶点与Sink汇点t(代表背景)和源点Source(代表前景)连接的边,
- //这类边的权值通过Gibbs能量项的第一项能量项来表示。
- //另一类边是:每个顶点与其邻域顶点连接的边,这类边的权值通过Gibbs能量项的第二项能量项来表示。
- /*
- Construct GCGraph
- */
- static void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, double lambda,
- const Mat& leftW, const Mat& upleftW, const Mat& upW, const Mat& uprightW,
- GCGraph<double>& graph )
- {
- int vtxCount = img.cols*img.rows; //顶点数,每一个像素是一个顶点
- int edgeCount = 2*(4*vtxCount - 3*(img.cols + img.rows) + 2); //边数,需要考虑图边界的边的缺失
- //通过顶点数和边数创建图。这些类型声明和函数定义请参考gcgraph.hpp
- graph.create(vtxCount, edgeCount);
- Point p;
- for( p.y = 0; p.y < img.rows; p.y++ )
- {
- for( p.x = 0; p.x < img.cols; p.x++)
- {
- // add node
- int vtxIdx = graph.addVtx(); //返回这个顶点在图中的索引
- Vec3b color = img.at<Vec3b>(p);
- // set t-weights
- //计算每个顶点与Sink汇点t(代表背景)和源点Source(代表前景)连接的权值。
- //也即计算Gibbs能量(每一个像素点作为背景像素或者前景像素)的第一个能量项
- double fromSource, toSink;
- if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
- {
- //对每一个像素计算其作为背景像素或者前景像素的第一个能量项,作为分别与t和s点的连接权值
- fromSource = -log( bgdGMM(color) );
- toSink = -log( fgdGMM(color) );
- }
- else if( mask.at<uchar>(p) == GC_BGD )
- {
- //对于确定为背景的像素点,它与Source点(前景)的连接为0,与Sink点的连接为lambda
- fromSource = 0;
- toSink = lambda;
- }
- else // GC_FGD
- {
- fromSource = lambda;
- toSink = 0;
- }
- //设置该顶点vtxIdx分别与Source点和Sink点的连接权值
- graph.addTermWeights( vtxIdx, fromSource, toSink );
- // set n-weights n-links
- //计算两个邻域顶点之间连接的权值。
- //也即计算Gibbs能量的第二个能量项(平滑项)
- if( p.x>0 )
- {
- double w = leftW.at<double>(p);
- graph.addEdges( vtxIdx, vtxIdx-1, w, w );
- }
- if( p.x>0 && p.y>0 )
- {
- double w = upleftW.at<double>(p);
- graph.addEdges( vtxIdx, vtxIdx-img.cols-1, w, w );
- }
- if( p.y>0 )
- {
- double w = upW.at<double>(p);
- graph.addEdges( vtxIdx, vtxIdx-img.cols, w, w );
- }
- if( p.x<img.cols-1 && p.y>0 )
- {
- double w = uprightW.at<double>(p);
- graph.addEdges( vtxIdx, vtxIdx-img.cols+1, w, w );
- }
- }
- }
- }
- //论文中:迭代最小化算法step 3:分割估计:最小割或者最大流算法
- /*
- Estimate segmentation using MaxFlow algorithm
- */
- static void estimateSegmentation( GCGraph<double>& graph, Mat& mask )
- {
- //通过最大流算法确定图的最小割,也即完成图像的分割
- graph.maxFlow();
- Point p;
- for( p.y = 0; p.y < mask.rows; p.y++ )
- {
- for( p.x = 0; p.x < mask.cols; p.x++ )
- {
- //通过图分割的结果来更新mask,即最后的图像分割结果。注意的是,永远都
- //不会更新用户指定为背景或者前景的像素
- if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
- {
- if( graph.inSourceSegment( p.y*mask.cols+p.x /*vertex index*/ ) )
- mask.at<uchar>(p) = GC_PR_FGD;
- else
- mask.at<uchar>(p) = GC_PR_BGD;
- }
- }
- }
- }
- //最后的成果:提供给外界使用的伟大的API:grabCut
- /*
- ****参数说明:
- img——待分割的源图像,必须是8位3通道(CV_8UC3)图像,在处理的过程中不会被修改;
- mask——掩码图像,如果使用掩码进行初始化,那么mask保存初始化掩码信息;在执行分割
- 的时候,也可以将用户交互所设定的前景与背景保存到mask中,然后再传入grabCut函
- 数;在处理结束之后,mask中会保存结果。mask只能取以下四种值:
- GCD_BGD(=0),背景;
- GCD_FGD(=1),前景;
- GCD_PR_BGD(=2),可能的背景;
- GCD_PR_FGD(=3),可能的前景。
- 如果没有手工标记GCD_BGD或者GCD_FGD,那么结果只会有GCD_PR_BGD或GCD_PR_FGD;
- rect——用于限定需要进行分割的图像范围,只有该矩形窗口内的图像部分才被处理;
- bgdModel——背景模型,如果为null,函数内部会自动创建一个bgdModel;bgdModel必须是
- 单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
- fgdModel——前景模型,如果为null,函数内部会自动创建一个fgdModel;fgdModel必须是
- 单通道浮点型(CV_32FC1)图像,且行数只能为1,列数只能为13x5;
- iterCount——迭代次数,必须大于0;
- mode——用于指示grabCut函数进行什么操作,可选的值有:
- GC_INIT_WITH_RECT(=0),用矩形窗初始化GrabCut;
- GC_INIT_WITH_MASK(=1),用掩码图像初始化GrabCut;
- GC_EVAL(=2),执行分割。
- */
- void cv::grabCut( InputArray _img, InputOutputArray _mask, Rect rect,
- InputOutputArray _bgdModel, InputOutputArray _fgdModel,
- int iterCount, int mode )
- {
- Mat img = _img.getMat();
- Mat& mask = _mask.getMatRef();
- Mat& bgdModel = _bgdModel.getMatRef();
- Mat& fgdModel = _fgdModel.getMatRef();
- if( img.empty() )
- CV_Error( CV_StsBadArg, "image is empty" );
- if( img.type() != CV_8UC3 )
- CV_Error( CV_StsBadArg, "image mush have CV_8UC3 type" );
- GMM bgdGMM( bgdModel ), fgdGMM( fgdModel );
- Mat compIdxs( img.size(), CV_32SC1 );
- if( mode == GC_INIT_WITH_RECT || mode == GC_INIT_WITH_MASK )
- {
- if( mode == GC_INIT_WITH_RECT )
- initMaskWithRect( mask, img.size(), rect );
- else // flag == GC_INIT_WITH_MASK
- checkMask( img, mask );
- initGMMs( img, mask, bgdGMM, fgdGMM );
- }
- if( iterCount <= 0)
- return;
- if( mode == GC_EVAL )
- checkMask( img, mask );
- const double gamma = 50;
- const double lambda = 9*gamma;
- const double beta = calcBeta( img );
- Mat leftW, upleftW, upW, uprightW;
- calcNWeights( img, leftW, upleftW, upW, uprightW, beta, gamma );
- for( int i = 0; i < iterCount; i++ )
- {
- GCGraph<double> graph;
- assignGMMsComponents( img, mask, bgdGMM, fgdGMM, compIdxs );
- learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM );
- constructGCGraph(img, mask, bgdGMM, fgdGMM, lambda, leftW, upleftW, upW, uprightW, graph );
- estimateSegmentation( graph, mask );
- }
- }