RFM(Recency、Frequency、Monetary)用户价值模型是一种常用的客户细分和价值评估模型,通过分析客户的最近一次购买时间(Recency)、购买频率(Frequency)和消费金额(Monetary)等指标,对客户进行分类和评估,识别出高价值客户和低价值客户,以便于制定针对性的营销策略和服务。
以下是RFM用户价值模型的数据分析拆解讲解:
1. 数据收集和准备:首先需要从公司的销售系统或其他相关系统中收集相关的客户数据,包括客户购买时间、购买频率和消费金额等信息,并进行数据清洗和预处理,确保数据的准确性和一致性。
2. 指标计算:在RFM模型中,需要计算客户的最近一次购买时间(Recency)、购买频率(Frequency)和消费金额(Monetary)等指标。最近一次购买时间可以通过客户最近一次购买时间与当前时间的差值来计算;购买频率可以通过客户购买次数除以购买时间的时间差来计算;消费金额可以直接采用客户在一定时间内的消费金额作为指标。
3. 数据分析:通过RFM指标的计算,可以将客户进行分类和评估。通常将每个指标分为3-5个等级,并将客户的指标得分进行加权或平均得到客户的综合得分,根据综合得分将客户分为高价值、中价值和低价值客户等不同分类。对于不同类别的客户,可以分析其购买习惯、行为特征、偏好等信息,制定针对性的营销策略和服务。
4. 结果可视化和解释:将RFM模型分析的结果以可视化的形式呈现出来,如饼图、条形图、热力图等,以便于更好地理解和解释分析结果。可以通过可视化结果,发现客户的分布情况、不同类别客户的比例等信息,为决策提供有用的信息。
5. 结果报告和推广:将RFM模型的分析结果整理成报告,向公司的相关部门和管理层传达分析结果,并制定相应的营销策略和服务计划。同时也可以通过推广RFM模型,提高公司对于客户价值评估和营销策略的认识和应用水平,为公司的业务发展提供有力的支持。
对于上面的问题,通常是这样实施的。
想要计算每个用户的RFM,通常我们需要的信息有:用户ID,消费时间,消费金额
思路是这样:
1.确定时间范围
例如,在上面翔宇的店铺中,就采用了统计本月31天的这个时间间隔确定了时间范围
2.要定义指标的衡量标准
例如对于最近消费时间间隔R来说,我们怎样定义标准呢?是小于3天算高呢?还是小于5天算高呢?
还是超过20天算低呢?对于这个问题,对于不同的业务场景来说都是不同的,所以,这个时候,我们就得找上我们的业务、运营来讨论定义标准了。
定义好标准后,我们通常得到类似这样一个打分表
RFM模型的打分表可以根据不同公司或业务的需求进行设计,通常可以将每个RFM指标分为3-5个等级,如下所示:
* 最近一次购买时间(Recency):
* 5分:最近一次购买时间在1-30天内
* 4分:最近一次购买时间在31-60天内
* 3分:最近一次购买时间在61-90天内
* 2分:最近一次购买时间在91-180天内
* 1分:最近一次购买时间超过180天
价值低 价值高
>180天
|
91-180天
|
61-90天
|
31-60天
|
1-30天
|
1分
|
2分
|
3分
|
4分
|
5分
|
* 购买频率(Frequency):
* 5分:购买次数在6次及以上
* 4分:购买次数在4-5次之间
* 3分:购买次数在2-3次之间
* 2分:购买次数为1次
* 1分:未购买
≥6次
|
4-5次
|
2-3次
|
1次
|
未购买
|
5分
|
4分
|
3分
|
2分
|
1分
|
* 消费金额(Monetary):
* 5分:消费金额在5000元及以上
* 4分:消费金额在2001-5000元之间
* 3分:消费金额在1001-2000元之间
* 2分:消费金额在501-1000元之间
* 1分:消费金额在500元及以下
根据以上打分表,对于每个客户可以根据其RFM指标的值得到相应的分数,然后将三个指标的分数加权或平均,得到客户的综合得分,根据综合得分将客户分为高价值、中价值和低价值客户等不同分类。
通常我们肯定是要将重点放在前四类客户上。对于
1.重要价值客户,RFM都很高,我们要提供VIP服务
2.重要发展客户,消费频率低,这类客户是最容易转化成第一类客户的群体,一定要想办法提高他们的消费频率。
3.重要保持客户,最近一笔消费时间已经有些远了,所以必须要主动保持联系,提高复购。
4.重要挽留客户,这类客户消费频率低和最近消费时间间隔比较远,但是消费金额高,这种用户即将流失,要主动联系用户,调查问题出在哪里,想办法挽回。
总结
1.RFM模型是通过三个以下指标来分析的方法
~R 最近1次消费时间间隔(Recency)
~F 消费频率(Frequency)
~M 消费金额(Monetary):一段时间内消费的总金额
2.通过三个指标将客户划分为8个类别
3.对于每个类别的客户要提供不同的服务
4.RFM模型能够应用的场景很广,例如电商、航空、酒店、超市等。
下面是一个简单的RFM模型表格示例:
R(最近一次购买时间)表格示例
客户编号
|
最近一次购买日期
|
001
|
2022-03-12
|
002
|
2022-02-25
|
003
|
2022-01-08
|
004
|
2021-12-01
|
在这个表格中,每行代表一个客户,列名为最近一次购买日期。根据这个表格,可以计算出每个客户最近一次购买时间的天数或者月数,然后根据RFM的打分表,对其进行得分,进而进行客户细分和分类。
F(购买频率)表格示例
客户编号
|
购买次数
|
001
|
5次
|
002
|
3次
|
003
|
1次
|
004
|
2次
|
在这个表格中,每行代表一个客户,列名为购买次数。根据这个表格,可以计算出每个客户购买的频率,然后根据RFM的打分表,对其进行得分,进而进行客户细分和分类。
M(消费金额)表格示例
客户编号
|
消费金额
|
001
|
6000元
|
002
|
3000元
|
003
|
500元
|
004
|
800元
|
在这个表格中,每行代表一个客户,列名为消费金额。根据这个表格,可以计算出每个客户的消费金额,然后根据RFM的打分表,对其进行得分,进而进行客户细分和分类。
客户编号
|
最近一次购买时间(Recency)
|
购买频率(Frequency)
|
消费金额(Monetary)
|
RFM综合得分
|
001
|
15天
|
5次
|
6000元
|
555
|
002
|
60天
|
3次
|
3000元
|
333
|
003
|
120天
|
1次
|
500元
|
121
|
004
|
200天
|
2次
|
800元
|
221
|
在上表中,每行代表一个客户,每列代表客户的RFM指标,包括最近一次购买时间、购买频率和消费金额。RFM综合得分是根据这三个指标的得分计算而来,得分可以采用上一问所述的打分表进行计算。根据综合得分,客户可以被分为不同的分类,例如上表中的客户001可以被分类为高价值客户,客户003可以被分类为低价值客户。