ICLR 2022 few shot image classification paper(一)
最近调研了ICLR2022接收的paper。发现一些有趣的paper,关于few-shot ICLR2022接收paper链接。其中有几篇有趣的paper,小样本学习的主要目标是让模型只通过少量的训练样本,就能很好的泛化到测试任务上。但是分类器容易受到攻击,严重影响模型的泛化能力。换种说法就是模型不够鲁棒,模型不鲁棒不只是few-shot image classification 的问题,其他CV任务也是一样。提升模型的泛化能力是一件很有意义的工作。于是发现了大佬的工作,如下:
A SIMPLE APPROACH TO ADVERSARIAL ROBUSTNESS IN FEW-SHOT IMAGE CLASSIFICATION 下载链接