FEW-SHOT

这篇博客介绍了ICLR2022会议上关于few-shot图像分类的研究,重点探讨了如何提升模型在小样本情况下的泛化能力和对抗性鲁棒性。作者分享了一篇论文链接,该论文提出了一种简单的方法来增强模型在小样本图像分类任务中的对抗性鲁棒性,这对于解决模型泛化能力和鲁棒性问题具有重要意义。
摘要由CSDN通过智能技术生成

ICLR 2022 few shot image classification paper(一)

最近调研了ICLR2022接收的paper。发现一些有趣的paper,关于few-shot ICLR2022接收paper链接。其中有几篇有趣的paper,小样本学习的主要目标是让模型只通过少量的训练样本,就能很好的泛化到测试任务上。但是分类器容易受到攻击,严重影响模型的泛化能力。换种说法就是模型不够鲁棒,模型不鲁棒不只是few-shot image classification 的问题,其他CV任务也是一样。提升模型的泛化能力是一件很有意义的工作。于是发现了大佬的工作,如下:

A SIMPLE APPROACH TO ADVERSARIAL ROBUSTNESS IN FEW-SHOT IMAGE CLASSIFICATION 下载链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VisionX Lab

你的鼓励将是我更新的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值