Few-shot Learning survey-精简高效版-小样本综述

一、Few-shot Learning问题定义

Few-shot Learning 是 Meta Learning 在监督学习领域的应用。Meta Learning(元学习),又称为 learning to learn,在 meta training 阶段将数据集分解为不同的 meta task,去学习类别变化的情况下模型的泛化能力,在 meta testing 阶段,面对全新的类别,不需要变动已有的模型,就可以完成分类。  

形式化来说,few-shot 的训练集中包含了很多的类别,每个类别中有多个样本。在训练阶段,会在训练集中随机抽取 C 个类别,每个类别 K 个样本(总共 CK 个数据),构建一个 meta-task,作为模型的支撑集(support set)输入;再从这 C 个类中剩余的数据中抽取一批(batch)样本作为模型的预测对象(batch set)。即要求模型从 C*K 个数据中学会如何区分这 C 个类别,这样的任务被称为 C-way K-shot 问题。  

训练过程中,每次训练(episode)都会采样得到不同 meta-task,所以总体来看,训练包含了不同的类别组合,这种机制使得模型学会不同 meta-task 中的共性部分,比如如何提取重要特征及比较样本相似等,忘掉 meta-task 中 task 相关部分。通过这种学习机制学到的模型,在面对新的未见过的 meta-task 时,也能较好地进行分类

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
样本学习是指在具有非常有限的样本数的情况下进行学习和分类任务的一种机器学习方法。在传统的机器学习算法中,通常需要大量的样本来训练模型,以便对新的样本进行准确的分类。然而,在现实生活中,获得大量样本是非常昂贵和困难的,因此需要一种能够有效利用有限样本的学习方法。 小样本学习的主要挑战是如何在缺少大量标记样本的情况下进行模型训练和泛化。为了解决这个问题,研究人员提出了许多不同的方法。其中一种主流的方法是使用元学习(meta-learning),它通过从一系列相关任务中进行学习,来提高在新任务上的性能。这种方法可以将已有的知识迁移到新任务上,而无需大量样本。 另一种常用的方法是基于生成模型的方法,它通过生成新的样本来扩充训练集。这些生成的样本可以从现有样本中学习到数据的分布规律,从而提高模型的泛化能力。 此外,还有一些其他的小样本学习方法,如基于度量学习的方法、基于关系学习的方法等。这些方法都试图通过学习样本之间的相似性或关系来提高模型的学习能力。 总而言之,小样本学习是一种在样本稀缺的情况下进行机器学习和分类任务的方法。通过使用元学习、生成模型、度量学习以及关系学习等方法,小样本学习可以有效地利用有限的样本来提高模型的性能和泛化能力,为实际应用中的样本稀缺问题提供了解决方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值