few-shot 微调网络

​​​​​​https://www.youtube.com/watch?v=3zSYMuDm6RU&list=PLvOO0btloRnuGl5OJM37a8c6auebn-​​​​​​rH2&index=3

  • 预训练 + 微调

在大规模数据集上预训练,在support set上微调。方法简单,准确率高。

  1. 预备知识

1.1 cosine similarity

投影的长度,在-1 和1 之间。

如果长度不同,则就进行归一化。

    1. softmax function

可以将一个向量,映射为一个概率分布

    1. softmax classifier

是一个全连接层 + softmax函数

    1. 概述

大部分的few-shot都是类似的想法,都是用一个大数据集来预训练一个神经网络,用来从图像中提取特征。做few-shot预测的时候,需要用到这个网络。

我们将query和support set中的图像,都映射为特征向量。

这样就可以比较,query和support,在特征空间上的相似度。

比例,计算两两之间的cosine similarity,最后选中相似度高的,作为query的分类结果。

  1. 预训练

用什么方法训练该网络,都可以。但是神经网络的结构和训练方法,会对结果产生影响。

对特征向量最平均,得到表征松鼠的特征向量,然后是三个特征向量做归一化,得到μ1,μ3.他们的二范数,全部为1.

μ1,μ2,μ3就是对这三个类别的表征。

分类的时候,需要拿query的特征向量,分别和μ1,μ2,μ3做对比,

有了从support中各个类别的特征向量,可以对query进行分类。

此处p为三元素向量,分别表示三个类别的概率。

  1. Fine-tuning

Fine-turning,可以大幅提高few-shot的准确率。

假设support 有三个类别,则W为三行;p的维度也是3.

Support 中有几个或者几十个标注的样本,每个样本,都对应一个cross entropy。

用support中所有的样本和标签来学习分类器。

Support 很小,因此要加正则化。防止过拟合。

  1. 训练技巧

4.1 初始化

4.2正则化

可以用entropy来衡量概率p的信息量。

4.3  cosine similarity + softmax classifier

区别:在内积之前,先做归一化。

  1. 总结

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大模型在few-shot学习中的使用通常涉及两个主要步骤:预训练和微调。 首先,大模型通常会通过在大规模数据集上进行预训练来学习通用的语言表示。这个预训练阶段可以使用无监督学习方法,如语言模型预测任务,其中模型被要求根据上下文预测缺失的单词。通过这种方式,模型可以学习到丰富的语言知识和语义表示。 然后,在few-shot学习中,我们可以使用预训练的大模型来进行微调微调是指在一个特定的任务或领域上使用少量标记数据来进一步训练模型。在few-shot学习中,我们通常只有很少的标记样本可用,因此需要利用预训练模型的泛化能力来进行快速学习。 微调的过程通常包括以下几个步骤: 1. 准备数据集:收集并标记少量的样本数据,这些数据用于在特定任务上进行微调。 2. 构建任务描述:为了进行few-shot学习,我们需要提供一个任务描述,包括输入样本和对应的标签。这个任务描述可以是一个简单的问题-回答对,或者是一个分类任务的样本集合。 3. 微调模型:将预训练的大模型与任务描述一起输入,通过梯度下降等优化算法来微调模型参数。微调的目标是使模型在特定任务上表现良好。 4. 评估性能:使用额外的测试数据集来评估微调后模型的性能。这可以帮助我们了解模型在few-shot学习中的效果。 通过这种方式,大模型可以利用其在预训练阶段学到的通用知识和语义表示来进行快速学习,并在少量标记数据的情况下展现出较好的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值