概率统计随记(显著性检验 置信区间等)

显著性检验基于小概率事件实际不可能性原理,用于判断样本与假设的差异是否显著。例如,抛硬币实验中,若观察到正反面差异巨大,可能拒绝原假设(硬币均匀)。同样,身高测量误差过大也可能质疑随机性假设。显著性水平α通常取0.1, 0.05, 0.01,当实际概率p小于α时,可拒绝原假设。置信区间则关注样本值与总体值的关系,95%置信度意味着样本值有95%可能性落在特定区间内。显著性检验与置信区间分别关注假设与差异、样本与总体的关系。" 116846686,10548680,Ubuntu下Minicom超级终端配置与使用指南,"['Linux工具', '串口通信', 'Ubuntu系统', '终端模拟器', 'Minicom']
摘要由CSDN通过智能技术生成


显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备则假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异(随机产生的),还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
上面的话是抄来的,如果不是很好理解,我们来看几个例子:
A)抛硬币试验
      我们知道如果硬币是均匀的,则抛硬币试验服从二项分布,如果抛100次,出现正面和反面的次数应该差不多。但如果实际抛的结果正反面出现的次数差别很大呢?这时候我们就要考虑怀疑假设了。通过这种假设和结果检验,给我们提供了一种判断手段(硬币是不是均匀的)。
     原假设H0:硬币是均匀的
    备选假设H1:硬币不是均匀的.
B)测量身高值(这个可以扩充为任何参数值)
     我们知道,如果测量身高的误差产生是随机的,那么标准化的误差应该服从N(0,1)分布。如果实际的误差非常大,那么也可以怀疑我们的假设(误差是随机产生的)有问题。
    原假设H0:测量的误差是随机的
    备选假设H1:测量的误差不是随机的
C)总体均值
    如果随机变量x1,x2,...,xn的是相互独立的,那么这些样本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值