数学之美
文章平均质量分 51
计算机就是数学,要做好一名好的程序员,必须具有深厚的数学功底。
广州接入
毕业于北京交通大学计算机系,一直从事企业应用开发,有十多年的SaaS平台产品研发经验。擅长系统架构,需求分析。
展开
-
泰勒公式(泰勒展开式,泰勒中值定理)使用基本技巧
泰勒系列公式在计算中占有很重要的位置,比如计算近似值,极限等。泰勒公式在实际应用中需要特别注意的是一定要使得收敛到某个数,用得最多的是使其趋于零,如果该项在展开后不能趋于零(定值),则展开往往没有意义,因为泰勒展开的目的是可以利用高阶无穷小来达到舍弃一些项,从而简化计算。这里我们可以分析一下上式:1)(n+1)!,一般我们在舍弃时,n都不可能取很大,因此这一项一般情况下只能作为常数考虑,不能作原创 2015-01-18 08:42:34 · 55690 阅读 · 0 评论 -
对离散型随机分布的理解
01分布是比较简单的离散型分布,是伯努利分布的一个特例。伯努利分布:F(x)= ∑(k:0->x){C(n,k) p^k(1-p)^(n-k)},取n=1,即做一次伯努利试验,则得01分布。当n->∞时,p比较小的时候,P(X=k)=C(n,k) p^k(1-p)^(n-k,设λ=pn,带入可得P(X=k)= λ^k * e^(-λ) / k!,其实就是泊松分布。伯努利分布只有在n比较大和p比较小原创 2012-05-05 23:02:30 · 4130 阅读 · 0 评论 -
高等数学总结(曲线,曲面积分2)
12)高斯公式:格林公式是2维下的二重积分和坐标积分之间的关系,高斯公式是三维空间中三重积分和坐标平面积分之间的关系。13)闭曲面的曲面积分为零的条件:高斯公式右端为0的充分必要条件是:14)通量:其中A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k(i,j,k)是坐标向量。15)散度:A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k原创 2015-02-08 16:10:18 · 4398 阅读 · 1 评论 -
高等数学总结(曲线,曲面积分1)
1)第一类曲线积分(对弧长的积分) 对光滑曲线L,有某个函数f(x,y)在该曲线上有界,则有如下积分定义: 被积函数f(x,y)表达了在曲线L上的一种数量性质,比如密度,热度之类的。 第一类曲线积分有如下三个性质: A)常数因子可提,函数相加的弧长积分等于函数对弧长分别积分的和; B) 对弧长L的积分,如果L=L1+L2+...+Ln,则满足原创 2015-02-08 16:07:51 · 11410 阅读 · 1 评论 -
高等数学(总结8--多元微分1)
1)原创 2015-02-08 16:01:44 · 2968 阅读 · 0 评论 -
高等数学(总结7--解析向量空间)
1)向量相加(减)等于分量分别相加(减);(交换律,结合律)2)向量与数相乘等于分量与数分别相乘;(结合律,分配律)3)向量分量坐标的方向符合右手系,向量积的定义与此密切相关;4)模:a(a1,a2,..,a3) 的模|a|=(a1^2+a2^2...an^2)^(1/2);5)方向角和方向余弦:这个公式很重要,后面很多定理的证明其实都是基于此;很容易证明:这个公式很容易推广到n维向量。6)向原创 2015-02-08 16:00:38 · 5136 阅读 · 0 评论 -
高等数学(总结1-导数的几个定理)
1)费马引理: 证明的关键:如果在x0处可导,则在x0处的左导数等于右导数等于导数。 意义:显然(x0,f(x0))是f(x)在x0邻域内的一个极值点,推广:f(x)的极值点(驻点),满足f'(x)=0.给出了求驻点的方法。2)罗尔定理 证明要点:连续区间存在最大值和最小值,费马引理; 几何意义:连续区间[a,b],如果在开区间可导,且f(a)=f(b),则区原创 2015-01-25 11:07:49 · 18725 阅读 · 3 评论 -
复习笔记(函数的极值)
1)求函数f(x)的所有驻点和不可导点;f(x)的一阶导等于0 的点和不可导的点;2)如果f(x)的二阶导,在驻点处大于0,则为极小值,如果小于0为极大值,等于0则需要根据驻点附近的一阶导符号转换来确定极大值,极小值,或者不是极值;3)一阶导可以确定函数的单调性,一阶导大于0,单调递增,一阶导小于0则为单调递减;4)二阶导可以确定函数的图形形状,二阶导小于0为凸形,二阶导大于0为凹型;原创 2015-02-03 09:00:06 · 2477 阅读 · 0 评论 -
离散型概率分布
1) 伯努利分布 核心是结果只有两种结果。2) 二项分布 n次独立重复试验中成功的次数P(X=n)3) 泊松分布 一种小概率事件的分布,对于二项分布在n较大,p较小时的一种近似,便于计算。4)几何分布 独立重复试验,直到首次试验成功的次数n.即:前n-1次都是失败,第n次成功。5)负二项分布 独立重复试验,试验持续进行直到累积成功r次时的试验次数n,P(X=n),可以看出几何分布是...原创 2018-12-23 13:28:59 · 1763 阅读 · 0 评论 -
概率随机3(对极限定理的认识)
对于确定的量,比如一个班上的人数,桌子上面有5个苹果之类的。都是比较确定的事情,是已经存在的。概率所研究的是不确定性量和不可准测量,不确定量代表的是没有发生的事情,及随机事件(严格来讲,概率研究的是不确定性中的一种,即在一定结果范围内的不确定性)。而不可准测量代表的是虽然量有准确值,但由于技术或者操作因素,无法测得其真实值,比如一支笔的长度,理论上你是不可能测得其真实值的。总结起来有以下三种情况:原创 2015-03-18 23:26:14 · 2205 阅读 · 0 评论 -
概率统计随记(显著性检验 置信区间等)
显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备则假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异(随机产生的),还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验原创 2015-03-10 19:38:34 · 19551 阅读 · 0 评论 -
概率随记(2)
1)随机变量的分布函数:F(x)=P{X∞表示随机变量X小于等于x时的概率,也就是随机变量落在(-∞,x]区间的概率。是一种概率的累积函数。基本性质:F(x)>=0;0a}=1-P(X2)两点分布:P{X=k}=p^k *(1-p)^(1-k) k=0,13)伯努利二项分布P{X = k} = C(n,k)p^k(1 − p)^n−k, k= 0, 1, · · ·, n通过分布函数很原创 2015-02-19 23:27:32 · 2124 阅读 · 0 评论 -
概率随记(1)
1、古典概型: 特点:每个样本点的概率相等,P1=1/n,每次试验只有一个样本点发生。 事件A概率P(A)=A包含的基本事件数/总的基本事件数。 经典例子:每个球落入每个格子的概率相等,每个格子可以落入任意个球。k个球落入n个格子的概率: A)基本事件总数:1个球可以落入到任和格子,有l种可能,k个球就有n*n*n*...*n=n^k种基本事件。原创 2015-02-18 13:55:58 · 2002 阅读 · 0 评论 -
线性代数笔记(内积空间,实二次型)
1)几何向量的数量积:A·B=||A|| ||B||cosθ,也叫点积,内积,注意:数量积是一个数;2)数量积的四条基本性质:A·B=B·A;(A+B)·C=A·C+B·C;(kA)·B=k(A·B);A·A≥0,且当A=0时等号成立;3)两个向量数量积等于0的充要条件是它们正交;4)两个向量的数量积等于它们对应坐标的乘积的代数和;5)内积公理:(A,B)=(B原创 2015-01-25 11:01:18 · 5908 阅读 · 0 评论 -
线性代数笔记(线性方程组、线性空间,线性变换)
1) 系数矩阵,未知向量,右端常量;2)方程组相容:方程组有解;3)奇次线性方程,平凡解,非平凡解;4)n元奇次线性方程组有非零解的充要条件为A的秩小于n;5)基础解系;基础解系中的所含解向量个数=自由未知量个数=未知量个数-系数矩阵的秩(基本未知量)。其矩阵消元法实现可参考MyMathLib系列.6)奇次线性方程组,当秩A=s7)非奇次线性方程,增广矩阵,有解充分必要条件(秩A=秩(A:B))原创 2015-01-25 10:58:52 · 4297 阅读 · 0 评论 -
线性代数笔记(向量)
1)数量:又叫标量,纯量,只有大小没有方向,可以用一个数值来确定;2)向量:又名矢量,描述这类量不仅需要大小,还需要表达其方向;3)有向线段:具有一定长度和确定方向的线段;4)几何向量:简称向量,用有向线段表示的向量称几何向量;5)固定向量,自由向量:起点是否固定来区分,起点固定的叫固定向量,起点不固定的叫自由向量;6)向量相等:大小和方向都相同;7)负向量:大小相同,方向相反;8)模:也叫范数,原创 2015-01-25 10:57:24 · 4620 阅读 · 0 评论 -
线性代数笔记(行列式)
1)数域:含0和1,必须对四则运算封闭(闭合),也就是数域中的数进行加减乘除的结果还是数域中的数;2)逆序:与顺序对应,大的数排在小的数前面就形成一个逆序;3)偶排列,奇排列:如果拍列的逆序数为偶,则称偶排列,为奇数则称奇排列。这些定义为应用在后面的行列式变换中;4)排列中两个元素的对换都改变排列的奇偶性(定理);5)任何一个排列J1,J2..Jn总可以通过对换与自然排列相互转化;且该排列与对换的原创 2015-01-19 19:11:10 · 7174 阅读 · 0 评论 -
线性代数笔记(特征问题与矩阵相似)
1)一元多项式,多项式,第i次项系数,常数项,首项,首项系数,n次多项式,零次多项式,零多项式,多项式相等,多项式的加减2)多项式的向量表示法:向量的元素代表多项式的系数,次数隐含在元素的顺序上,比如f(x)=x^2+2x+1 可表示为(1,2,1).n次多项式是一个具有n+1个分量的向量.3)原创 2015-01-25 10:59:31 · 4417 阅读 · 0 评论 -
线性代数笔记(矩阵)
矩阵是平面的,如果是三维的呢?一维是向量,二维是矩阵,三维呢?1)矩阵:由m*n个数排成的矩形数表;横排叫行,竖排叫列;2)方阵:行数和列数都是n的矩阵;主对角线,对角元素,迹(对角元素的和);方阵A的行列式;3)矩阵的线性运算:加法(同型矩阵对应元素分别相加),零矩阵,负矩阵,减法(同型矩阵对应元素分别相减);4)矩阵数乘:每个元素分别相乘;数乘积.5)矩阵运算的八条性质:A+B=B+A;(A+原创 2015-01-25 10:58:14 · 4177 阅读 · 0 评论 -
读《数学之美》一书记
这本书很有名气,大咖吴军的书,他写了一系列的这类文章。上次在京东买书时,就随手买了这本书,经过断断续续一周时间看完,收获不少。很多人觉得数学比较难,而且没什么用,这其实是个非常大的误解,当然,这也与我们的教育方法有关,我们很多时候都只讲结果,而不讲原因,数学教学与应用严重脱节。数学本来就是人类在认知和解决实际问题中发展出来的一门科学,大部分的数学公式和定理其实都是自然规律或者解决一类问题的方法总...原创 2018-10-17 19:54:27 · 993 阅读 · 1 评论 -
高等数学总结(完)
经过这些日子的连续性作战,高等数学的复习终于完成了:1)整个高等数学最本质的思想是极限思想;而这一思想贯穿高等数学的全过程;2)函数本质就是映射,映射包含: A)从现实问题到数学模型的映射; C)现实空间到向量空间到坐标系空间之间的映射;3)绝对的精确其实很难,退一步则海阔天空(近似思维);4)近似到精确的桥梁是极限;5)分割,化小是极限方法的手术刀。原创 2015-02-08 16:09:39 · 3923 阅读 · 1 评论 -
高等数学总结(无穷级数)
1)无穷级数的收敛:部分和有极限;2)收敛级数的性质:A)Un收敛于s,则kUn也收敛于ks:级数的每一项都乘以一个非零常数k,不改变级数的收敛性。B)级数A,B收敛于a,b,则级数A+B(A-B)收敛于a+b(a-b);两个收敛级数可以逐项相加(相减).C)在级数中除掉、加上或者改变有限项,不改变级数的收敛性。D)对于收敛级数A,如果对级数项任意添加括号形成的级数仍然收敛,且和不变;注意:加原创 2015-02-08 15:30:24 · 44993 阅读 · 0 评论 -
高等数学(总结9-多重积分)
1)二重积分的性质:A)B)可加性C)D)如果f(x,y)E)M,m分别是f(x,y)的最大值和最小值:F)积分中值定理原创 2015-02-08 16:06:28 · 10010 阅读 · 1 评论 -
高等数学总结8(多元微分2)
6)空间曲线的切线和法平面A) 在M(x0,y0,z0)点切线(参数方程形式):方程组形式:B)在M(x0,y0,z0)的切线法平面(参数形式):方程组形式:7)空间曲面的切法面和法线:A)F(x,y,z)=0B)切平面:原创 2015-02-08 16:02:28 · 2211 阅读 · 0 评论 -
高等数学(总结6)
3)分部积分法4)定积分性质1)f(x)+g(x)的积分等于f(x)积分与g(x)的和;2)公因子可提3)区间可加性;4)如果函数f(x)是常数,则积分=b-a5)区间[a,b]上f(x)>=0,则积分也大于等于0;如果在区间[a,b]上f(x)6)m(b-a)7)微分中值公式:原创 2015-02-03 21:18:14 · 2166 阅读 · 0 评论 -
高等数学(总结5)
1)定义2)还原法;1)形12)形2原创 2015-02-07 08:37:55 · 2554 阅读 · 0 评论 -
高等数学(总结4)
6)曲率y=f(x),二阶可导后面为参数化表示。7)曲线中心坐标原创 2015-02-03 21:14:58 · 1825 阅读 · 0 评论 -
高等数学(总结3)
4)极大值和极小值5)最大值,最小值 先求极值,再求最值原创 2015-02-03 21:14:13 · 1951 阅读 · 0 评论 -
高等数学(总结2)
1)洛必达求极限法则证明要点:求x->a时极限与f(a),F(a)无关,意义:如果函数f(x)/F(x)的极限不好求,可转换成求f'(x)/F'(x)的极限;0/0型。,只要符合条件,洛必达法则可以连续使用.原创 2015-02-03 21:12:37 · 2624 阅读 · 0 评论 -
高等数学笔记(2)
1)微分:dy=A.dx,含义:对于函数y=f(x),在x的增量dx足够小时,函数值y的增量dy可以近似等于A.dx,其中A是一个与dx无关的常数.2)f(x)在点x0处可微的充分必要条件是函数f(x)在x0处可导;3)导数又称为微商:导数公式dy/dx=f'(x) ==> 微分公式dy=f'(x)dx4)微分的几何意义:非线性函数的局部线性化(以直线段替代曲线段).5)微分公式可以很容易根据求导原创 2013-02-28 17:25:32 · 4805 阅读 · 0 评论 -
高等数学笔记(1)
为了看懂模式识别,复习了一下高数:1) 集合:并,交,补,差2)区间:开区间,半开区间,闭区间3)邻域:邻域,去心邻域,左邻域,右邻域;4)映射:单射,满射,一一映射,逆映射,复合映射;5)泛函:从非空集到数集的映射(a,b,c,d)=>(1,2,3,4)6)变换:从非空集X到自身的映射;7)函数:从实数集合X到实数集Y的映射;8)自变量,因变量,定义域,函数值,函数关系;9)函数的有界性;单调性原创 2013-02-27 10:30:21 · 12332 阅读 · 0 评论