前面我写的归并排序实现,虽然原理上没什么问题,但算法实现不是很理想,今天没什么事情,重新优化了一下,这里比较一下:
1) 第1种方式,我采用了辅助存储来进行归并,代码如下:
private void MergeSort1(int[] A, int iS, int iE)
{
if (iS == iE)
{
count++;
return;
}
int iE1 = (iS + iE) / 2;
int iS2 = iE1 + 1;
MergeSort1(A, iS, iE1);
MergeSort1(A, iS2, iE);
//针对两个排好序的段(iS-iE1,iS2-iE)进行整理
int i1 = iS, j1 = iS2;
//这里的归并采用辅助存储空间的方式.
int[] Result = new int[iE - iS + 1];
int b = 0;
while(true)
{
count++;
if (j1 <= iE && i1 <= iE1)
{
if (A[i1] <= A[j1])
{
Result[b] = A[i1];
i1++;
}
else
{
Result[b] = A[j1];
j1++;
}
}
else if (j1 <= iE & i1 > iE1)
{
Result[b] = A[j1];
j1++;
}
else if (j1 > iE & i1 <= iE1)
{
Result[b] = A[i1];
i1++;
}
else
{
break;
}
b++;
}
//将结果回写到原数组,这是必须的,否则结果不对.
for (int j = iS; j <= iE; j++)
{
A[j] = Result[j - iS];
count++;
}
}
2)第2种方式,归并时没有采取辅助存储,代码如下:
private void MergeSort2(int[] A, int iS, int iE)
{
if (iS == iE)
{
count++;
return;
}
int iE1 = (iS + iE) / 2;
int iS2 = iE1 + 1;
MergeSort2(A, iS, iE1);
MergeSort2(A, iS2, iE);
//针对两个排好序的段(iS-iE1,iS2-iE)进行整理归并
int i1 = iS, j1 = iS2;
//因为都存放在数组的iS->iE段中,而且从小到大,从左到右存放。
//最大整理次数为iE-iS,但一般只要整理完其中一段后即可.
while (true)
{
//左边段当前值小于等于右边段最小值,则不需要移动,左边段指针i1右移一位即可。
if (A[i1] <= A[j1])
{
count++;
i1++;//右移
//因为两个段都是排序的,左边段如果整理完毕,则左边段不再需要整理
if (i1 >= j1)
{
break;
}
}
else
{
//如果左边段大于右边段,则需要移位处理.
//将j1移到i1处,原来的i1到j1-1整体右移一位.
int tmp = A[i1];
A[i1] = A[j1];
for (int b2 = j1; b2 > i1 + 1; b2--)
{
A[b2] = A[b2 - 1];
count++;
}
A[i1 + 1] = tmp;
i1++; j1++;
}
//因为两个段都是排序的,右边段如果整理完毕,则左边段不再需要整理
if (j1 > iE)
{
break;
}
}
}
两种方式,在速度上相差非常大,我测试后发现,Count计数的差距可达10倍,说明归并时采用上述的插入排序,虽然节省了空间,但时间上损失非常大(因为归并插入排序是的时间复杂度是的2次方级)。第1中方式采用了辅助存储,T(n)=2n,时间复杂度是线性的。实际上,如果归并算法的归并排序如果不借助辅助存储空间,而是移位的话,性能不比纯粹的插入排序好多少。归并排序在时间上和空间上比起快速排序来说,还是差很多。因此归并排序的实现还是要借助辅助存储空间,才会真正发挥其优势。