4 - L3 机器学习 | 逻辑回归

逻辑回归

二分类问题 在二分类问题中,目标变量只有两个可能的取值,通常记作0和1。逻辑回归的任务是根据输入的特征,预测目标变量为1的概率。

逻辑函数(Logistic Function) 逻辑回归使用逻辑函数(或称Sigmoid函数)将线性回归模型的输出转换为一个(0, 1)区间内的概率值。逻辑函数的公式为:

其中,𝑧 是线性回归模型的输出,即特征的线性组合:

逻辑回归的训练

逻辑回归通过最大似然估计(Maximum Likelihood Estimation, MLE)来估计模型参数( 𝛽),从而使模型预测的概率最符合训练数据。

逻辑回归与线性回归的比较

相同点

广义线性模型:逻辑回归和线性回归都是广义线性模型(Generalized Linear Models, GLM)。二者都通过线性组合特征来预测目标变量。

输入特征:两者使用相同的输入特征,特征可以是连续的也可以是离散的。

不同点

目标变量分布:线性回归假设目标变量(因变量)服从高斯分布(正态分布),而逻辑回归假设目标变量服从伯努利分布。

输出:线性回归的输出是一个连续的数值,而逻辑回归的输出是一个介于0到1之间的概率值。

损失函数:线性回归使用均方误差(Mean Squared Error, MSE)作为损失函数,而逻辑回归使用对数似然损失(Log-Likelihood Loss)。

适用场景

线性回归:适用于回归问题,即预测一个连续的数值,如房价预测、温度预测等。

逻辑回归:适用于分类问题,即预测样本属于某一类别的概率,特别是二分类问题,如垃圾邮件分类、疾病诊断等。

总结

逻辑回归通过分析训练数据中的特征,构建一个概率模型,用于预测新数据的分类结果。其本质是通过逻辑函数将线性回归的输出转换为概率,从而实现二分类问题的解决。与线性回归不同,逻辑回归更关注分类问题,并且对目标变量的分布假设不同。理解逻辑回归的原理和应用场景对于解决实际的分类问题非常重要。

1. 数据预处理

# import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from matplotlib.colors import ListedColormap
# Load dataset
dataset = pd.read_csv('Social_Network_Ads.csv')
dataset

X = dataset.iloc[ : , [2,3]].values
y = dataset.iloc[ : ,4].values

X.shape, y.shape

# Split the data into training and testing sets
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.25,
                                                    random_state=0)

X_train.shape,y_train.shape

 

# Standardize the features
from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Create a logistic regression model and fit it to the training data
from sklearn.linear_model import LogisticRegression

classifier = LogisticRegression()
classifier.fit(X_train, y_train)

 

# Generate predictions on the test set
y_pred = classifier.predict(X_test)
from matplotlib.colors import ListedColormap

X_set, y_set = X_train,y_train

x = np.arange(start=X_set[:,0].min()-1,
              stop=X_set[:, 0].max()+1,
              step=0.01)

y = np.arange(start=X_set[:,1].min()-1,
              stop=X_set[:,1].max()+1,
              step=0.01)

x.shape, y.shape

# Visualize the decision boundary
def plot_decision_boundary(X, y, classifier, title):
    X_set, y_set = X, y
    X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01),
                         np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha=0.75, cmap=ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    color=ListedColormap(('red', 'green'))(i), label=j)
    plt.title(title)
    plt.xlabel('Age (standardized)' )
    plt.ylabel('Estimated Salary (standardized)')
    plt.legend()
    plt.show()
# Plot the decision boundary for the training set
plot_decision_boundary(X_train, y_train, classifier, title='Logistic Regression (Training set)')

 

# Plot the decision boundary for the testing set
plot_decision_boundary(X_test, y_pred, classifier, title='Logistic Regression (Testing set)')

 

总结 

代码展示了一个完整的逻辑回归机器学习过程。首先,我们加载并预处理数据,然后将其分割为训练集和测试集。接着,使用逻辑回归模型拟合训练数据,并对测试数据进行预测。为了评估模型的性能,我们计算了准确率、精确度、召回率和F1评分。最后,通过可视化决策边界和数据点,我们直观地展示了模型在训练集上的分类效果

  • 15
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值