T1 - 实现mnist手写数字识别

1. MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/exdb/mnist/(下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。 

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

# 导入mnist数据,依次分别为训练集图片、训练集标签、测试集图片、测试集标签
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3. 归一化 

# 将像素的值标准化至0到1的区间内。(对于灰度图片来说,每个像素最大值是255,每个像素最小值是0,也就是直接除以255就可以完成归一化。)
train_images, test_images = train_images / 255.0, test_images / 255.0
# 查看数据维数信息
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

4. 可视化图片 

# 将数据集前20个图片数据可视化显示
# 进行图像大小为20宽、10长的绘图(单位为英寸inch)
plt.figure(figsize=(20,10))
# 遍历MNIST数据集下标数值0~49
for i in range(20):
    # 将整个figure分成5行10列,绘制第i+1个子图。
    plt.subplot(2,10,i+1)
    # 设置不显示x轴刻度
    plt.xticks([])
    # 设置不显示y轴刻度
    plt.yticks([])
    # 设置不显示子图网格线
    plt.grid(False)
    # 图像展示,cmap为颜色图谱,"plt.cm.binary"为matplotlib.cm中的色表
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # 设置x轴标签显示为图片对应的数字
    plt.xlabel(train_labels[i])
# 显示图片
plt.show()

 5. 调整图片格式

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1)) #其中 28, 28 是图片的尺寸,1 表示图片是灰度图,即单通道
test_images = test_images.reshape((10000, 28, 28, 1))

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

二、构建CNN网络模型

# 创建并设置卷积神经网络
# 卷积层:通过卷积操作对输入图像进行降维和特征抽取
# 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
# 全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
model = models.Sequential([
    # 设置二维卷积层1,设置32个3*3卷积核,activation参数将激活函数设置为ReLu函数,input_shape参数将图层的输入形状设置为(28, 28, 1)
    # ReLu函数作为激活励函数可以增强判定函数和整个神经网络的非线性特性,而本身并不会改变卷积层
    # 相比其它函数来说,ReLU函数更受青睐,这是因为它可以将神经网络的训练速度提升数倍,而并不会对模型的泛化准确度造成显著影响。
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    #池化层1,2*2采样
    layers.MaxPooling2D((2, 2)),
    # 设置二维卷积层2,设置64个3*3卷积核,activation参数将激活函数设置为ReLu函数
    layers.Conv2D(64, (3, 3), activation='relu'),
    #池化层2,2*2采样
    layers.MaxPooling2D((2, 2)),

    layers.Flatten(),                    #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'), #全连接层,特征进一步提取,64为输出空间的维数,activation参数将激活函数设置为ReLu函数
    layers.Dense(10)                     #输出层,输出预期结果,10为输出空间的维数
])
# 打印网络结构
model.summary()

这段内容主要展示了如何构建一个用于图像分类的卷积神经网络(CNN),特别是处理手写数字识别的任务。以下是对图片中内容的详细解释:

  1. 调整图片格式:
  • 数据集中有一组手写数字的图片,这些图片需要调整为网络模型可以处理的格式。
  • train_images 和 test_images 是分别包含训练和测试数据的数组。通过 reshape 函数,将它们的形状调整为 (数量, 28, 28, 1),其中 28, 28 是图片的尺寸,1 表示图片是灰度图,即单通道。
  1. 构建CNN网络模型:
  • 输入层: 输入的是大小为 28x28x1 的灰度图像。
  • 卷积层1:使用32个3x3的卷积核来提取图片的特征,激活函数是 relu,它能引入非线性,帮助模型学习复杂的特征。
  • 池化层1:在卷积层之后,使用2x2的池化操作,将特征图的尺寸缩小一半,同时保留重要的特征。
  • 卷积层2:增加了卷积核的数量(64个3x3卷积核),再次提取更深层的特征。
  • 池化层2:与池化层1类似,将特征图再一次缩小。
  • Flatten层:将池化层输出的二维特征图展平成一维向量,为全连接层作准备。
  • 全连接层:这是一个普通的神经网络层,用于综合提取到的特征。
  • 输出层:输出有10个神经元,对应于10个分类(即数字0-9),用来预测手写数字的类别。 
  1. 模型总结:
  • model.summary() 是用于打印网络结构的函数,显示网络的各层以及参数的详细信息。
  • 这段代码是为了建立一个神经网络来识别手写数字,通过一系列的卷积、池化和全连接层,最终输出一个对数字类别的预测。

三、编译模型

"""
这里设置优化器、损失函数以及metrics
这三者具体介绍可参考我的博客:
https://blog.csdn.net/qq_38251616/category_10258234.html
"""
# model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准
model.compile(
	# 设置优化器为Adam优化器
    optimizer='adam',
	# 设置损失函数为交叉熵损失函数(tf.keras.losses.SparseCategoricalCrossentropy())
    # from_logits为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    # 设置性能指标列表,将在模型训练时监控列表中的指标
    metrics=['accuracy'])

四、训练模型

"""
这里设置输入训练数据集(图片及标签)、验证数据集(图片及标签)以及迭代次数epochs
关于model.fit()函数的具体介绍可参考我的博客:
https://blog.csdn.net/qq_38251616/category_10258234.html
"""
history = model.fit(
    # 输入训练集图片
	train_images,
	# 输入训练集标签
	train_labels,
	# 设置10个epoch,每一个epoch都将会把所有的数据输入模型完成一次训练。
	epochs=10,
	# 设置验证集
    validation_data=(test_images, test_labels))

五、预测

通过下面的网络结构我们可以简单理解为,输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率(并非概率),out数字越大可能性越大,仅此而已。

各层的作用

● 输入层:用于将数据输入到训练网络

● 卷积层:使用卷积核提取图片特征

● 池化层:进行下采样,用更高层的抽象表示图像特征

● Flatten层:将多维的输入一维化,常用在卷积层到全连接层的过渡

● 全连接层:起到“特征提取器”的作用

● 输出层:输出结果

plt.imshow(test_images[1])

pre = model.predict(test_images) # 对所有测试图片进行预测
pre[1] # 输出第一张图片的预测结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值