2024年高新认定RD、PS、IP是指什么?三者需要提供哪些材料?

很多刚接触高新认定的人员,不了解PS、RD、IP这三个高新技术企业认定条件,今天小编就跟大家好好介绍一下!

一、三大指标定义

(一)PS

PS代表高新技术产品(服务),是指符合国家和省高新技术重点范围、技术领域和产品参考目录的全新型产品。

(二)RD

RD代表研究开发活动,研究开发活动是指企业开发新产品、新技术所进行的活动形成的研发项目。

(三)IP

IP代表知识产权,知识产权这点最好理解,指的是发明专利、实用新型、软件著作权等。

对于没有实际意义、纯粹凑数的知识产权会被专家重点关注。专家不认可与技术领域或产品无关联性或关联性很弱,或与高新产品的主要性能指标无贡献的的知识产权。知识产权的相关性,优于先进性。

二、RD、IP、PS的关联

一般而言,企业科研项目立项之后会进入研究开发阶段(RD)。研发成功后形成知识产权(IP)成果或形成技术诀窍、技术秘密等非知识产权成果。进行科技成果转化,转化成功后产出高新技术产品(PS)、高新技术服务,或是样品样机、新工艺。

三者为层层递进的关系,即RD→IP→PS,企业在准备高企认定资料的过程中,需要注意三者的先后顺序。其中:

1、一项研发RD,可以形成一项科技成果IP,经转化形成一项高新产品或高新服务PS。

2、一项研发RD,可以形成一项技术秘密或诀窍,经转化形成一项高新产品或高新服务PS。

3、一项研发RD,可以形成若干项科技成果,其中某些科技成果经转化形成一项高新产品或高新服务PS;某些科技成果经转化形成另一项高新产品或高新服务PS;或转化为样机、样品。

4、一项研发RD,可以形成一项或多项科技成果,但目前为止均未转化。

5、一项研发RD,可能失败或中止,未形成任何科技成果。

三、如何确定RD、IP、PS

(一)确定RD

1)列出已有立项文件的研发项目;

2)将已立项项目与科技成果进行对应;

3)若有科技成果对应不上现有立项项目需要补充立项;

4)结合已有的立项和补充立项项目,最终确定出RD的名称和数量。

(二)确定IP

1)列出企业所有的知识产权 (含未授权) ;

2)列出非知识产权的科技成果;

3)筛选出符合国家高新技术企业认定的要求且有效的科技成果;

4)确定所有科技成果的名称和编号(成立3年以上的企业科技成果不少于15项)。

(三)确定PS

1)根据开票明细、报税情况,整理产品 (服务)及其收入,同类产品(服务)进行合并;

2)合并后的产品 (服务) 按金额大小排序并与科技成果进行对应;

3)确保与有效的科技成果有对应关系的产品(服务)收入占比60%以上;

4)优化产品(服务)名称,确定PS名称及数量企业整理的RD、IP以及PS资料。

四、RD、IP、PS证明资料

(一)RD证明材料

1、研究开发活动材料:整理出包括研发项目的名称、研发项目组的成员、项目的立项报告以及项目的中期检查报告、结题验收报告等。

2、研发组织管理水平制度材料:收集包括研发组织管理制度资料、研发投入核算体系制度资料;研发机构建设及设备设施、开展的产学研合作活动等资料;以及成果转化的组织实施与激励奖励制度资料、相关创新创业平台建立情况;科技人员的培养进修、培训以及优秀人才引进制度等材料。

(二)IP证明资料

1、企业知识产权技术的先进程度和对主要产品的核心支持作用汇总表。

2、知识产权汇总表(与IP表一致)。

3、知识产权附件。

(三)PS证明资料

企业须同时提供销售合同、销售发票、高新技术产品或服务专项审计报告(第三方会计师事务所出具)等材料。

RD、IP、PS这三个高新技术企业认定条件之间是相辅相成的,其中一个出现问题,另外两个也会在高新认定评审中受到影响!企业要牢牢把握好三者的关系,严格核实三者的材料!

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值