获取更多资讯,赶快关注上面的公众号吧!
文章目录
果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)
2011年台湾亚东技术学院的潘文超受果蝇觅食行为的启发,提出了一种的全局优化算法—果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)。该算法的优点在于计算过程简单、易于编码实现和易于理解等。关注公众号,后台回复“果蝇”或“FOA”获取Matlab源码!
启发
果蝇本身在感觉和感知方面优于其他物种,尤其是在嗅觉和视觉方面,如图1所示。
果蝇的嗅觉器官能发现空气中漂浮的各种气味;它甚至能闻到40公里外的食物。然后,当它接近食物位置,也可以用它灵敏的视觉找到食物和同伴聚集的位置,并朝那个方向飞行。
初始化
首先随机初始化果蝇种群位置InitX_axis和InitY_axis。
食物搜索
通过嗅觉给出果蝇寻找食物的随机方向和距离:
X
i
=
X
−
a
x
i
s
+
R
a
n
d
o
m
V
a
l
u
e
X_i=X_{-}axis+RandomValue
Xi=X−axis+RandomValue
Y i = X − a x i s + R a n d o m V a l u e Y_i=X_{-}axis+RandomValue Yi=X−axis+RandomValue
计算味道浓度判定值
由于无法得知食物位置,因此先估计与原点的距离
D
i
s
t
i
Dist_i
Disti,再计算味道浓度判定值
s
i
s_i
si,此值为距离倒数:
Dist
i
=
X
i
2
+
Y
i
2
\text { Dist }_{i}=\sqrt{X_{i}^{2}+Y_{i}^{2}}
Dist i=Xi2+Yi2
S
i
=
1
/
Dist
i
S_{i}=1 / \text { Dist }_{i}
Si=1/ Dist i
适应度评估
将味道浓度判定值 s i s_i si。代入味道浓度判定函数(或称为适应度函数fitness function),用来求出果蝇个体位置的味道浓度 S m e l l i Smell_i Smelli:
S m e l l i = F u n c t i o n ( S i ) Smell_i=Function(S_i) Smelli=Function(Si)
确定最优个体
找出该果蝇群体中味道浓度最低的果蝇(最优个体);
[
bestSmell bestindex
]
=
min
(
Smell
i
)
[\text { bestSmell bestindex }]=\min \left(\text { Smell }_{i}\right)
[ bestSmell bestindex ]=min( Smell i)
飞行
记录并保留最佳味道浓度值bestSmell与其x、y坐标,此时果蝇群体利用视觉向该位置飞去:
Smellbest = bestSmell
\text { Smellbest = bestSmell }
Smellbest = bestSmell
X axis = X ( bestindex ) X_{\text {axis }}=X(\text { bestindex }) Xaxis =X( bestindex )
Y axis = Y ( bestindex ) Y_{\text {axis }}=Y(\text { bestindex }) Yaxis =Y( bestindex )
循环
重复执行食物搜索、计算味道浓度判定值、应度评估、定最优个体,并判断最佳味道浓度是否优于前一迭代最佳味道浓度。若当前迭代次数小于最大迭代数Maxgen,则执行飞行。
Matlab代码
FOA求 Y = 2 − X 2 Y=2-X^2 Y=2−X2极大值
%***設置參數
%清空運行環境
clc
clear
%速度更新參數
X_axis=10*rand();
Y_axis=10*rand();
maxgen=100; %疊代次數
sizepop=20; %種群規模
%個體和速度最大和最小值
for i=1:sizepop
X(i)=X_axis+2*rand()-1;
Y(i)=Y_axis+2*rand()-1;
D(i)=(X(i)^2+Y(i)^2)^0.5;
S(i)=1/D(i);
%類似Fitness適應度函數
Smell(i)=2-S(i)^2;
end
%***根據初始味道濃度值尋找極值
[bestSmell bestindex]=max(Smell);
%***保留最佳值位置
X_axis=X(bestindex);
Y_axis=Y(bestindex);
Smellbest=bestSmell;
%***根據公式更新粒子位置和速度,並且根據新粒子的適應度值更新個體極值和群體極值
%疊代尋優
for g=1:maxgen
%粒子位置和速度更新
for i=1:sizepop
X(i)=X_axis+2*rand()-1;
Y(i)=Y_axis+2*rand()-1;
D(i)=(X(i)^2+Y(i)^2)^0.5;
S(i)=1/D(i);
%類似Fitness適應度函數
Smell(i)=2-S(i)^2;
end
%***根據初始味道濃度值尋找極值
[bestSmell bestindex]=max(Smell);
%***保留最佳值位置
if bestSmell>Smellbest
X_axis=X(bestindex);
Y_axis=Y(bestindex);
Smellbest=bestSmell;
end
%每代最優值紀錄到yy數組中
yy(g)=Smellbest;
Xbest(g)=X_axis;
Ybest(g)=Y_axis;
end
%***繪製最佳化個體適應度值趨勢圖
figure(1)
plot(yy)
title('Optimization process','fontsize',12)
xlabel('Iteration Number','fontsize',12);ylabel('Smell','fontsize',12);
figure(2)
plot(Xbest,Ybest,'b.');
title('Fruit fly flying route','fontsize',14)
xlabel('X-axis','fontsize',12);ylabel('Y-axis','fontsize',12);
结果如下:
FOA求 X 2 X^2 X2最小值
上述代码仅能用于测试一个二维函数,失去了通用性。下面提供了一个不同的版本,可能更容易使用和改进,且可以扩展到不同维度。
% Fruit Fly Optimization Algorithm,FOA.
% The standard verison programmed by Prof.Pan is a simplifed version which
% is used to test a very easy function.In my opinion,in order to enhance
% the FOA application field,it is necessary to change it into a general
% version,which may be simple for students and scholars to use.
% Programmed and code by Stephen Zhao from Shanghai University of Engineering Science(China)
% Email:zhaoqihui8193@yundaex.com
% If you have any questions concerning this program,please contact me.
% You might cite this article like this:Wen-Tsao Pan (2011)
% A new fruit fly optimization algorithm: Taking the financial distress
% model as an example, Knowledge-Based Systems, Vol.26, pp.69-74, 2012,
% DOI information: 10.1016/j.knosys.2011.07.001.
function [Smellbest,X,Y] = FOA(n,maxt,lb,ub,dim)
% Parameters setting
if nargin < 1
n = 20; % Population size
maxt = 5e2; % Max iterations
dim = 30; % Dimension of test function
lb = -100 * ones(1,dim); % Lower bound of test function
ub = 100 * ones(1,dim); % Upper bound of test function
end
% X = zeros(1 * dim);
% Y = zeros(1 * dim);
% new_X = zeros(1 * dim);
% new_Y = zeros(1 * dim);
% D = zeros(1 * dim);
% Sol = zeros(1 * dim);
% Fitness = zeros(n * 1);
% Initialize the original position
for i = 1:n
X(i,:) = lb+(ub-lb).*rand(1,dim); % the position of X axis
Y(i,:) = lb+(ub-lb).*rand(1,dim); % the position of Y axis
D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5; % Caculate the distance
Sol(i,:) = 1./D(i,:); % the solution set
Fitness(i) = fun(Sol(i,:)); % Caculate the fitness
end
[bestSmell,index] = min(Fitness); % Get the min fitness and its index
new_X = X(index,:); % the X axis of min fitness
new_Y = Y(index,:); % the Y axis of min fitness
Smellbest = bestSmell;
best = Sol(index,:);
% Start main loop
for t = 1:maxt
for i = 1:n
% Refer to the process of initializing
X(i,:) = new_X + (ub - lb).*rand(1,dim);
Y(i,:) = new_Y + (ub - lb).*rand(1,dim);
D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5;
Sol(i,:) = 1./D(i,:);
Fitness(i) = fun(Sol(i,:));
end
[bestSmell,index] = min(Fitness);
% If the new value is smaller than the best value,update the best value
if (bestSmell < Smellbest)
X(i,:) = X(index,:);
Y(i,:) = Y(index,:);
Smellbest = bestSmell;
end
% Out put result each 100 iterations
if round(t/100) == (t/100)
Smellbest;
end
cg_curve(t) = Smellbest;
end
% Output/display
disp(['Number of evaluations: ',num2str(maxt)]);
disp(['Best solution=',num2str(best),' fmin=',num2str(Smellbest)]);
% Draw the picture
semilogy((1:25:maxt),cg_curve(1:25:maxt),'k-o','markersize',5);
title('Convergence curve')
xlabel('Iteration');
ylabel('Best fruit fly (score) obtained so far');
hold on
axis tight
grid off
box on
legend('FOA')
% This is a classcial test function,namely Sphere function,which range is
% from -100 to 100.The dimension can be defined as you want.
function z = fun(u)
z = sum(u.^2);
结果如下: