记录一对虽然相似但是做法完全不同,但是各自做法都有可取之处的两道题。239. 滑动窗口最大值--->ali求每k个里面的最大值

29 篇文章 0 订阅

三、239. 滑动窗口最大值--->ali求每k个里面的最大值

3.1 239. 滑动窗口最大值

用的是单调双向队列,该数据结构可以从两端以常数时间压入/弹出元素
存储双向队列的索引比存储元素更方便,因为两者都能在数组解析中使用。
算法非常直截了当:
处理前 k 个元素,初始化双向队列。
遍历整个数组。在每一步 :
清理双向队列 :
  - 只保留当前滑动窗口中有的元素的索引。//pop_front()
  - 移除比当前元素小的所有元素,它们不可能是最大的。//pop_back()
将当前元素添加到双向队列中。
将 deque[0] 添加到输出中。//因为是单调队列,队首肯定是最大的
返回输出数组。

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        deque<int> dq;//单调双端队列
        vector<int> ans;
        int len=0;
        for (int i=0;i<nums.size();++i)
        {
            while (len>0 && (i-dq[0]>=k)) 
            {
                dq.pop_front();
                --len;
            }
            while (len>0 && nums[dq[len-1]]<=nums[i]) 
            {
                dq.pop_back();
                --len;
            }
            dq.push_back(i);
            ++len;
            if (i>=k-1) ans.push_back(nums[dq[0]]);
        }
        return ans;
    }
};

因为双端队列不光可以双端插入删除,还可以双端访问,所以去掉len改进一下。

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        deque<int> dq;//单调双端队列
        vector<int> ans;
        for (int i=0;i<nums.size();++i)
        {
            while (!dq.empty() && (i-dq.front()>=k)) 
                dq.pop_front();
            while (!dq.empty() && nums[dq.back()]<=nums[i]) 
                dq.pop_back();
            dq.push_back(i);
            if (i>=k-1) ans.push_back(nums[dq.front()]);
        }
        return ans;
    }
};

3.2 ali求每k个里面的最小值的最大值

算法:

先把数组排个序,从大到小依次插入,插入的时候判断左右节点是否已经被插入过,如果已经被插入过,合并。合并并且更新集合的数量那就是并查集能做到的事情,记录集合同时维护 集合数量,把last_node_sum+1到new_node_sum的都变成当前值。

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;

vector<int> parent;
vector<int> rak;
vector<int> cnt;

int findf(int x)
{
    return (x==parent[x]? x:parent[x]=findf(parent[x]));
}

void to_union(int a,int b)
{
    int f1=findf(a);
    int f2=findf(b);
    if (rak[f1] > rak[f2])
    {
        parent[f2] = f1;
        cnt[f1]+=cnt[f2];
    }
    else
    {
        parent[f1] = f2;
        cnt[f2]+=cnt[f1];
        if (rak[f1] == rak[f2])
            ++rak[f2];
    }
}

struct node
{
    int x,index;
    node(int x,int index):x(x),index(index){}
};

bool cmp(node a,node b)
{
    return a.x>b.x;
}

int main()
{
    int n;
    cin>>n;
    vector<node> a;
    parent.resize(n);
    rak.resize(n);
    cnt.resize(n);
    vector<bool> p(n+10,false);
    for (int i=0;i<n;i++)
    {
        int aa;
        cin>>aa;
        a.push_back(node(aa,i+1));
        parent[i]=i;
        rak[i]=1;
        cnt[i]=1;
    }
    sort(a.begin(),a.end(),cmp);

    vector<int> ans(n+10);
    int now=0;
    for (int i=0;i<n;i++)
    {
        int x=a[i].x,id=a[i].index;
        //cout<<x<<' '<<id<<' '<<findf(id-1)<<endl;
        if (p[id-1])
            to_union(id-2,id-1);
        if (p[id+1])
            to_union(id,id-1);
        p[id]=true;
        int last=now;
        now=max(now,cnt[findf(id-1)]);
        //cout<<last<<' '<<now<<endl;
        for (int j=last+1;j<=now;j++)
            ans[j]=x;
    }

    for (int k=1;k<n;++k)
        cout<<ans[k]<<' ';
    cout<<ans[n]<<endl;
    return 0;
}

输入

5
2 5 3 1 2

输出

5 3 2 1 1

 

四、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值