- 正向传播
对于单个神经元来说
前向传播: z [ l ] = W [ l ] ⋅ a [ l − 1 ] + b [ l ] {z}^{[l]}={W}^{[l]}\cdot{a}^{[l-1]}+{b}^{[l]} z[l]=W[l]⋅a[l−1]+b[l]
激活函数: a [ l ] = g [ l ] ( z [ l ] ) { {a}^{[l]}}={ {g}^{[l]}}\left( { {z}^{[l]}}\right) a[l]=g[l](z[l])
矩阵化后对于单层的神经元
向量化实现过程可以写成: z [ l ] = W [ l ] ⋅ A [ l − 1 ] + b [ l ] {z}^{[l]}={W}^{[l]}\cdot {A}^{[l-1]}+{b}^{[l]} z[l]=W[l]⋅A[l−1]+b[l]
A [ l ] = g [ l ] ( Z [ l ] ) {A}^{[l]}={g}^{[l]}({Z}^{[l]}) A[l]=g[l](Z[l])
也就是说,一层神经元的输入是Al-1 ,经过Z ,然后激活得到 Al
Al 是下一层的输入。
A0 是第一层的输入,就是我们的原始样本数据,于是可以一直输入输出直到得到最后的输出Al
于是前向传播
- 初始化 A 0 A^0 A0
- 输入 A [ l − 1 ] {A}^{[l-1]} A