反向传播最简单推导

本文详细介绍了神经网络的前向传播和反向传播过程。在前向传播中,从原始样本数据开始,通过权重和激活函数计算各层神经元的输出。反向传播则涉及对损失函数求导,计算每个参数的梯度,包括激活函数的导数、权重和偏置的更新。这些梯度用于更新网络参数,以优化模型性能。
摘要由CSDN通过智能技术生成
  • 正向传播

在这里插入图片描述

对于单个神经元来说

前向传播: z [ l ] = W [ l ] ⋅ a [ l − 1 ] + b [ l ] {z}^{[l]}={W}^{[l]}\cdot{a}^{[l-1]}+{b}^{[l]} z[l]=W[l]a[l1]+b[l]

激活函数: a [ l ] = g [ l ] ( z [ l ] ) ​ { {a}^{[l]}}={ {g}^{[l]}}\left( { {z}^{[l]}}\right)​ a[l]=g[l](z[l])

矩阵化后对于单层的神经元

向量化实现过程可以写成: z [ l ] = W [ l ] ⋅ A [ l − 1 ] + b [ l ] ​ {z}^{[l]}={W}^{[l]}\cdot {A}^{[l-1]}+{b}^{[l]}​ z[l]=W[l]A[l1]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) {A}^{[l]}={g}^{[l]}({Z}^{[l]}) A[l]=g[l](Z[l])

也就是说,一层神经元的输入是Al-1 ,经过Z ,然后激活得到 Al

Al 是下一层的输入。

A0 是第一层的输入,就是我们的原始样本数据,于是可以一直输入输出直到得到最后的输出Al

在这里插入图片描述

于是前向传播

  • 初始化 A 0 A^0 A0
  • 输入 A [ l − 1 ] ​ {A}^{[l-1]}​ A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值