UVA 10827 Maximum sum on a torus 可循环的最大连续子矩阵

这题其实是uva 108的拓展,就是给出的矩阵中子矩阵的定义变成可循环的,比如下面这样是一个3*3的子矩阵:


1

-1

0

0

-4

2

3

-2

-3

2

4

1

-1

5

0

3

-2

1

-3

2

-3

2

4

1

-4


只要把矩阵拓展成四倍大,然后处理一下子矩阵不能大于N*N,然后按普通的最大连续矩阵做就可以了。

代码:

/*
 *   Author:        illuz <iilluzen[at]gmail.com>
 *   Blog:          http://blog.csdn.net/hcbbt
 *   File:          uva827.cpp
 *   Lauguage:      C/C++
 *   Create Date:   2013-09-05 16:36:28
 *   Descripton:    UVA 10827 Maximum sum on a torus, dp
 */
#include <cstdio>
#include <algorithm>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define repf(i, a, b) for (int i = (a); i <= (b); i++)

const int MAXN = 160;
int m[MAXN][MAXN], s[MAXN][MAXN], a[MAXN], n;

void maxSeq(int* a, int len, int &res) {
	res = a[0];
	int sum = 0;
	for (int i = 0; i < len; i++) {
		if (sum <= 0)
			sum = a[i];
		else sum += a[i];
		if (res < sum)
			res = sum;
	}
}

int main() {
	int t;
	scanf("%d", &t);
	while (t--) {
		scanf("%d", &n);
		repf(i, 1, n) repf(j, 1, n) {
			scanf("%d", &m[i][j]);
			m[i + n][j] = m[i][j + n] = m[i + n][j + n] = m[i][j];
		}
		repf(i, 1, 2 * n - 1) repf(j, 1, 2 * n - 1)
			s[i][j] = s[i - 1][j] + m[i][j];
		int ans = -0xfffffff, res;
		repf(i, 0, n - 1) repf(j, i + 1, i + n) {
			rep(l, n) {
				repf(k, 1, n) 
					a[k] = s[j][k + l] - s[i][k + l];
				maxSeq(a + 1, n, res);
				ans = max(ans, res);
			}
		}
		printf("%d\n", ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值