hdu 3007 最小包围圆

求能包含n个点的最小圆。参考了好多代码,被一个外心的公式坑了半天。。。

最后还是用有精度损失的方程去解...好像也就那个了...

话说据说求两点间最大距离就行了,数据实在水 = =

代码:

/*
*  Author:      illuz <iilluzen[at]gmail.com>
*  Blog:        http://blog.csdn.net/hcbbt
*  File:        zoj1450.cpp
*  Create Date: 2013-11-21 20:14:57
*  Descripton:  minCircle, geometric 
*/

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;

#define sqr(a) ((a) * (a))

const int MAXN = 1010;

const double PI = 2.0 * asin(1.0);
const double EPS = 1e-6;
const double INF = 1e20;

struct Point {
    double x;
    double y;
    Point() {};
    Point(double tx, double ty) {
        x = tx;
        y = ty;
    }
    Point operator-(const Point &b) const {
        return Point(x - b.x, y - b.y);
    }
    Point operator+(const Point &b) const {
        return Point(x + b.x, y + b.y); 
    }
    Point operator*(const double &k) const {
        return Point(x * k, y * k);
    }
    double operator*(const Point &b) const {    // 点积
        return x * b.y + y * b.x;
    }
    double operator^(const Point &b) const {    // 叉积
        return x * b.y - y * b.x;
    }
} p[MAXN];

typedef Point Vector;

struct Triangle {
    Point t[3];
    Triangle() { }
    Triangle(const Point a, const Point b, const Point c) {
        t[0] = a;
        t[1] = b;
        t[2] = c;
    }
};

struct Circle {
    Point cent;
    double r;
    Circle() { }
    Circle(Point p, double d) {
        cent = p;
        r = d;
    }
};

double dis(const Point &a, const Point &b) {
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

//double cross(const Point &a, const Point &b, const Point &o) {
//    return (a.x - o.x) * (b.y - o.y) - (b.x - o.x) * (a.y - o.y);
//}

double triangleS(Triangle t) {
    return (t.t[1] - t.t[0]) * (t.t[2] - t.t[0]);
}

double ddis(const Point &a, const Point &b) {
    return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}

Point midPoint(const Point &a, const Point &b) {
    return Point((a.x + b.x) / 2.0, (a.y + b.y) / 2.0);
}

Point lxl(const Point &a, const Point &b, const Point &c, const Point &d) {
    double k = ((a - c) ^ (c - d)) / ((a - b) ^ (c - d));
    Point l = b - a;
    return Point(a.x + l.x * k, a.y + l.y * k);
}

Point centerOfTriangle(Triangle t) {
    Point a = midPoint(t.t[0], t.t[1]), b, c = midPoint(t.t[0], t.t[2]), d;
    b = Point(a.x - t.t[0].y + t.t[1].y, a.y + t.t[0].x - t.t[1].x);
    d = Point(c.x - t.t[0].y + t.t[2].y, c.y + t.t[0].x - t.t[2].x);
    return lxl(a, b, c, d);
}

// Min Circle Of Points

Circle c;

void minCircleWith2Points(int pi, int pj, const Point t[]) {
    c.cent = midPoint(t[pi], t[pj]);
    c.r = dis(t[pi], t[pj]) / 2.0;
    for (int k = 0; k < pj; k++) {
        if (dis(c.cent, t[k]) <= c.r) continue;
        // if 3 point in line
        if (fabs((t[pi] - t[pj]) ^ (t[k] - t[pj])) < EPS) {
            double d1 = dis(t[pi], t[pj]);
            double d2 = dis(t[pi], t[k]);
            double d3 = dis(t[pj], t[k]);
            if (d2 >= d3) {
                c.cent = midPoint(t[pi], t[k]);
                c.r = dis(t[pi], t[k]);
            } else {
                c.cent = midPoint(t[pj], t[k]);
                c.r = dis(t[pj], t[k]);
            }
        } else {
            c.cent = centerOfTriangle(Triangle(t[pi], t[pj], t[k]));
            c.r = dis(c.cent, t[pi]);
        }
    }
}

void minCircleWith1Point(int pi, const Point t[]) {
    c.cent = midPoint(t[0], t[pi]);
    c.r = dis(t[0], t[pi]) / 2.0;
    for (int j = 1; j < pi; j++)
        if (dis(c.cent, t[j]) > c.r)
            minCircleWith2Points(pi, j, t);
}

void minCircle(int n, const Point t[]) {
    // init circle can be the convex hull diameter
    c.cent = midPoint(t[0], t[1]);
    c.r = dis(t[0], t[1]) / 2.0;

    for (int i = 2; i < n; i++)
        if (dis(c.cent, t[i]) > c.r)
            minCircleWith1Point(i, t);
}

int main() {
    int n;
    while (~scanf("%d", &n) && n) {
        for (int i = 0; i < n; i++)
            scanf("%lf%lf", &p[i].x, &p[i].y);
        if (n == 1) {
            printf("%.2f %.2f 0.00\n", p[0].x, p[0].y);
            continue;
        }
        minCircle(n, p);
        printf("%.2f %.2f %.2f\n", c.cent.x, c.cent.y, c.r);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值