Chorus代码理解

1.nn.Linear

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
Applies a linear transformation to the incoming data: y = x ∗ A T + b y = x* A^T+b y=xAT+b
in_features – size of each input sample
out_features – size of each output sample
bias – If set to False, the layer will not learn an additive bias. Default:True
in_features指的是输入张量的大小,即输入的[batch_size, size]中的size
out_features指的是输出张量的大小,即输出的二维张量的形状为[batch_size,output_size],当然,它也代表了该全连接层的神经元个数。
从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。
输入

import torch
from torch import nn
m = nn.Linear(20, 30)
input = torch.randn(128, 20)
output = m(input)
print(output.size())

输出

torch.Size([128, 30])

Linear

2.nn.MarginRankingloss

RankingLoss系列是来计算输入样本的距离,而不像MSELoss这种直接进行回归。其主要思想就是分为MarginRanking
Margin这个词是页边空白的意思,平常我们打印的时候,文本内容外面的空白就叫Margin
而在Loss中也是表达类似的意思,相当于是一个固定的范围,当样本距离(即Loss)超过范围,即表示样本差异性足够了,不需要再计算Loss
Ranking则是排序,当target=1,则说明 x 1 x_1 x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值