动态规划

【动态规划】01背包问题

https://johaupt.github.io/causal%20machine%20learning/Uplift_ITE_summary.html#x-learner

最优子结构的话,没什么好说的,就是原问题的最优解包含子问题的最优解。粗略的理解为:一个国家中有一名最强力的士兵(也就是问题的最优解),那么他必须是他所在军营中最强力的士兵(也是子问题的最优解),这样他才可能是这个国家最强力的士兵。

如果一个解是全局的最优解,我们按照区块划分,那么这个解也一定是这个区块的最优解,只有这样才有可能是全局的最优解

重叠子问题:子问题之间是不独立的,一个子问题在下一阶段的决策中可能被多次使用到

重叠子问题是一个递归解决方案里包含的子问题虽然很多,但不同子问题很少。少量的子问题被重复解决很多次。

例如LCS(最长公共子序列)问题,给定两个序列X和Y,长度分别是m和n,穷举子问题是指数级的,而不同子问题的数量只是mn.

用来解原问题的递归算法可以反复地解同样的子问题,而不是总在产生新的子问题。

虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,只有列出**正确的「状态转移方程」**才能正确地穷举。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值