动态规划:最长回文子串和子序列

1. 回文子串

回文串就是正着读和反着读都一样的字符串,例如aba,aabb等,给定一个字符串,求最长回文子串。注意子串是指连续的

1.1左右扩展

左右扩展的思想很有意思,如果一个问题用到了左右扩展的想法,那么久直接定以两个范围l,r,这样就可以避免奇偶问题了

一种非常直接的想法就是从某个字符开始,向两边开始搜索,然后匹配字符是否相等

<—向左搜索某个字符向右搜索—>
字符串aba
搜索边界lr

很容易想到有奇偶两种情况,当为奇数(‘aba’)时l=r=i,然后分别向两边移动,当为偶数(‘aabb’)时l=i,r=i+1

def helper(s,l,r):
    while l >= 0 and r < len(s) and s[l] == s[r]:
        l -= 1
        r += 1
    return s[l+1:r]
       
def longs(s):
    res = ''
    for i in range(len(s)):
        tmp = helper(s,i,i) # 奇数
        if len(tmp) > len(res):res = tmp
        tmp = helper(s,i,i+1) # 偶数
        if len(tmp) > len(res):res = tmp
    print(len(res))

s = input()
n = len(s)

longs(s)

1.2 动态规划

动态规划的想法也是非常简单的,假如i+1~j-1之间的字符串时回文字符串,那么如果s[i]==s[j]i~j之间的字符串也是回文子串,如果不相等,那么则不是回文子串,由此可以列出状态转移方程dp[i][j]=dp[i+1][j-1] and s[i]==s[j]。然后我们考虑初始条件,如果i==jdp[i][i]=True,一个字符肯定时回文串,两个字符和三个字符时则为dp[i][j] = (s[i] == s[j]),只需要考虑两边的字符即可。
可以看到,计算dp[i][j]用到了未来的状态dp[i+1][j],因此i需要反向迭代,即大到小。

原始字符串abcacba
子序列1abba
class Solution:
    def longestPalindrome(self, s: str) -> str:
        n = len(s)
        dp = [[False for j in range(n)] for i in range(n)]
        max_len = 0
        max_str = ''

        for i in range(n-1,-1,-1):
            for j in range(i,n):
                if s[i] == s[j]:
                    if j-i<=2:
                        dp[i][j] = True
                    else:
                        dp[i][j] = dp[i+1][j-1]
                if dp[i][j] and j - i + 1 > max_len:
                    max_len = j - i + 1
                    max_str = s[i:j+1]
        return max_str

最长回文子序列

子序列跟子串的一个最主要的区别在于是否连需,字符时不需要连需的,举个例子

原始字符串abcabca
子序列1abba
子序列2acca
子序列3aaa
子序列4acaca
子序列5ababa
子序列n

可以看到回文子序列时完全不需要连续的,那么现在的问题就是如何求解最长子序列呢?假如我们求出了i+1~j-1之间的最长子序列,那么如何求解i~j之间的最长子序列呢?

ii+1j-1j
s[i]abcabcas[j]

我们假设dp[i+1][j-1]是字符串i+1~j-1的最长回文子序列的长度,

  1. s[i]==s[j]时,有dp[i][j] = dp[i+1][j-1]+2
ii+1j-1j
s[i]abcabcas[j]
  1. s[i]!=s[j]时,这个时候就有意思了,也会分成两种情况,第一种时求i+1~j之间的最长回文序列,第二种就是求 i~j-1之间的最长回文子序列
ii+1j-1j
原始s[i]abcabcas[j]
i+1~jabcabcas[j]
i~j-1s[i]abcabca

此时有dp[i][j]=max(dp[i][j-1],dp[i+1][j])

状态转移方程我们已经得到了,下一步就是看看base,可以知道dp[i][i]=1,因为我们时从i~j,所以有j>i,如果j<i,那么就不可能得到回文序列,因此有dp[i][j]=0 if j < i

现在就剩一个边界问题了,求dp[i][j]需要用到dp[i+1][j],即求解i位置的时候用到了未来的i+1位置,为了保证可以正常计算,我们需要将i按照递减的方式来更新,j则用到了j和j-1,所以使用递增计算即可

    def longestPalindromeSubseq(self, s: str) -> int:
        n = len(s)
        dp = [[1 if i==j else 0 for i in range(n)] for j in range(n)]
        for i in range(n-1,-1,-1):
            for j in range(i+1,n):
                if s[i] == s[j]:
                    dp[i][j] = dp[i+1][j-1] + 2
                else:
                    dp[i][j] = max(dp[i+1][j],dp[i][j-1])
        return dp[0][-1]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长回文子串是指在一个字符串中最长回文子序列回文是指正着读和倒着读都一样的字符串。动态规划是解决最长回文子串问题的一种常用方法。动态规划的思想是将问题分解成子问题,通过求解子问题的最优解来得到原问题的最优解。在最长回文子串问题中,我们可以使用一个二维数组dp[i][j]来表示从i到j的子串是否为回文子串。如果dp[i][j]为true,则表示从i到j的子串是回文子串,否则不是。我们可以通过以下步骤来求解最长回文子串: 1. 初始化dp数组,将所有dp[i][i]都设置为true,表示单个字符是回文子串。 2. 遍历字符串s,从长度为2的子串开始,依次判断每个子串是否为回文子串。如果是,则将dp[i][j]设置为true。 3. 在遍历的过程中,记录最长回文子串的长度和起始位置。 4. 最后,通过起始位置和长度来截取最长回文子串。 下面是一个示例代码,可以帮助你更好地理解动态规划求解最长回文子串的过程: class Solution { public: string longestPalindrome(string s) { int len=s.size(); if(len<2) return s; bool dp[len][len];//布尔型,dp[i][j]表示从i到j是否构成回文 int max_count=1;//最大字串的长度 int start=0;//最长字串的起始位置 for(int j=0;j<len;j++) { for(int i=0;i<j;i++) { if(s[i]!=s[j]) dp[i][j]=false; else if((j-i)<3)//(j-1)-(i+1)+1<2表示dp[i][j]的最大字串长度为1 dp[i][j]=true; else { dp[i][j]=dp[i+1][j-1]; } if((j-i+1)>max_count&&dp[i][j]) { max_count=j-i+1; start=i; } } } return s.substr(start,max_count);//截取字符串 } };

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值