本文涉及的基础知识点
[蓝桥杯 2021 省 B] 杨辉三角形
题目描述
下面的图形是著名的杨辉三角形:
如果我们按从上到下、从左到右的顺序把所有数排成一列,可以得到如下数列:
1 , 1 , 1 , 1 , 2 , 1 , 1 , 3 , 3 , 1 , 1 , 4 , 6 , 4 , 1 , … 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1, \ldots 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…
给定一个正整数 N N N,请你输出数列中第一次出现 N N N 是在第几个数。
输入格式
输入一个整数 N N N 。
输出格式
输出一个整数代表答案。
样例 #1
样例输入 #1
6
样例输出 #1
13
提示
对于 20 % 20 \% 20% 的评测用例, 1 ≤ N ≤ 10 1 \leq N \leq 10 1≤N≤10;
对于所有评测用例, 1 ≤ N ≤ 1 0 9 1 \leq N \leq 10^9 1≤N≤109 。
蓝桥杯 2021 第一轮省赛 B 组 H 题。
预备知识:杨辉三角
性质一:第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。根据组合性质:第n行(第1行开始)有n个元素,完全左右对称。
推论: 我只需要考虑左半部分。
性质二:我只需要考虑前17列。左半部分有18列,至少35行。
C
35
17
C_{35}^{17}
C3517=4059928950越等于4e9,故无需考虑。
性质三:反对角线第0项:
C
n
0
C_{n}^0
Cn0 第1项:
C
n
1
C_{n}^1
Cn1
⋯
\cdots
⋯ 第k项
C
n
k
C_n^k
Cnk,n >=k。
性质四:
∀
\forall
∀k>0,
C
n
k
C_n^k
Cnk,随着n增加,单调递增。故k等于0,做特殊处理,k等于0,全部为1。如果N等于1,返回1。
推论:C_{n1}{k1} == C_{n2}{k2} 如果k1 > k2,则n1<n2。即从大小枚举k。由于有可能找到右半部分,故直接枚举1到16,然后取最小值。
从16到1枚举k,二分查找最小大于等于N的n,寻找首端。二分结束需要判断是否等于N,等于才算找到n。k=1时,一定有解,即
C
N
1
C_{N}^1
CN1。
∀
\forall
∀ k>=1 ,
C
N
k
C_N^k
CNk 一定大于N。求组合的时候非常容易超出int范围,处理方法如下:
ret =1 从k到n每次乘以最小的数,每次除以[1,n-k+1]中的最小的数。
如果超过N,直接返回N+1。
这样整个运算过程,确保在long long中。
由于乘的数大于除的,故结果只会越来越大,超过N后,一定不会小于N。
代码
核心代码
#include "forTest.h"
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include <bitset>
using namespace std;
template<class T = int>
vector<T> Read(int n,const char* pFormat = "%d") {
vector<T> ret(n);
for(int i=0;i<n;i++) {
scanf(pFormat, &ret[i]);
}
return ret;
}
template<class T = int>
vector<T> Read( const char* pFormat = "%d") {
int n;
scanf("%d", &n);
vector<T> ret;
T d;
while (n--) {
scanf(pFormat, &d);
ret.emplace_back(d);
}
return ret;
}
string ReadChar(int n) {
string str;
char ch;
while (n--) {
do
{
scanf("%c", &ch);
} while (('\n' == ch));
str += ch;
}
return str;
}
template<class T1,class T2>
void ReadTo(pair<T1, T2>& pr) {
cin >> pr.first >> pr.second;
}
template<class INDEX_TYPE>
class CBinarySearch
{
public:
CBinarySearch(INDEX_TYPE iMinIndex, INDEX_TYPE iMaxIndex) :m_iMin(iMinIndex), m_iMax(iMaxIndex) {}
template<class _Pr>
INDEX_TYPE FindFrist(_Pr pr)
{
auto left = m_iMin - 1;
auto rightInclue = m_iMax;
while (rightInclue - left > 1)
{
const auto mid = left + (rightInclue - left) / 2;
if (pr(mid))
{
rightInclue = mid;
}
else
{
left = mid;
}
}
return rightInclue;
}
template<class _Pr>
INDEX_TYPE FindEnd(_Pr pr)
{
INDEX_TYPE leftInclude = m_iMin;
INDEX_TYPE right = m_iMax + 1;
while (right - leftInclude > 1)
{
const auto mid = leftInclude + (right - leftInclude) / 2;
if (pr(mid))
{
leftInclude = mid;
}
else
{
right = mid;
}
}
return leftInclude;
}
protected:
const INDEX_TYPE m_iMin, m_iMax;
};
class Solution {
public:
long long Ans(int N) {
auto Com = [&](int canSel, int sel) {
if (canSel < sel) { return N + 1LL; }
long long res = 1;
for (int j = 1; j <= sel; j++) {
res *= (canSel - sel + j);
res /= j;
if (res > N) { return N + 1LL; };
}
return res;
};
if (1 == N) { return 1; }
long long ans = LLONG_MAX;
for (int k = 16; k > 0; k--) {
auto Check = [&](int mid) {
return Com(mid, k) >= N;
};
int n = CBinarySearch<int>(k, N).FindFrist(Check);
if (Com(n, k) == N) {
ans = min(ans, (long long)(n + 1) * n / 2 + k + 1);
}
}
return ans;
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
int N;
cin >> N;
auto res = Solution().Ans(N);
cout << res << std::endl;
#ifdef _DEBUG
/*Out(a, "a=");
Out(b, "b=");*/
#endif
return 0;
}
单元测试
TEST_METHOD(TestMethod11)
{
auto res = Solution().Ans(71523144);
AssertEx(4956LL, res);
}
TEST_METHOD(TestMethod12)
{
auto res = Solution().Ans(1);
AssertEx(1LL, res);
}
TEST_METHOD(TestMethod13)
{
auto res = Solution().Ans(6);
AssertEx(13LL, res);
}
TEST_METHOD(TestMethod14)
{
auto res = Solution().Ans(2);
AssertEx(5LL, res);
}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。