【二分查找 杨辉三角 寻找首端】P8749 [蓝桥杯 2021 省 B] 杨辉三角形|普及

本文涉及的基础知识点

C++二分查找
数论:质数、最大公约数、菲蜀定理

[蓝桥杯 2021 省 B] 杨辉三角形

题目描述

下面的图形是著名的杨辉三角形:

如果我们按从上到下、从左到右的顺序把所有数排成一列,可以得到如下数列:

1 , 1 , 1 , 1 , 2 , 1 , 1 , 3 , 3 , 1 , 1 , 4 , 6 , 4 , 1 , … 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1, \ldots 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,

给定一个正整数 N N N,请你输出数列中第一次出现 N N N 是在第几个数。

输入格式

输入一个整数 N N N

输出格式

输出一个整数代表答案。

样例 #1

样例输入 #1

6

样例输出 #1

13

提示

对于 20 % 20 \% 20% 的评测用例, 1 ≤ N ≤ 10 1 \leq N \leq 10 1N10;

对于所有评测用例, 1 ≤ N ≤ 1 0 9 1 \leq N \leq 10^9 1N109

蓝桥杯 2021 第一轮省赛 B 组 H 题。

预备知识:杨辉三角

性质一:第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。根据组合性质:第n行(第1行开始)有n个元素,完全左右对称。
推论: 我只需要考虑左半部分。
性质二:我只需要考虑前17列。左半部分有18列,至少35行。 C 35 17 C_{35}^{17} C3517=4059928950越等于4e9,故无需考虑。
性质三:反对角线第0项: C n 0 C_{n}^0 Cn0 第1项: C n 1 C_{n}^1 Cn1 ⋯ \cdots 第k项 C n k C_n^k Cnk,n >=k。
性质四 ∀ \forall k>0, C n k C_n^k Cnk,随着n增加,单调递增。故k等于0,做特殊处理,k等于0,全部为1。如果N等于1,返回1。
推论:C_{n1}{k1} == C_{n2}{k2} 如果k1 > k2,则n1<n2。即从大小枚举k。由于有可能找到右半部分,故直接枚举1到16,然后取最小值。
从16到1枚举k,二分查找最小大于等于N的n,寻找首端。二分结束需要判断是否等于N,等于才算找到n。k=1时,一定有解,即 C N 1 C_{N}^1 CN1
∀ \forall k>=1 , C N k C_N^k CNk 一定大于N。求组合的时候非常容易超出int范围,处理方法如下:
ret =1 从k到n每次乘以最小的数,每次除以[1,n-k+1]中的最小的数。
如果超过N,直接返回N+1。
这样整个运算过程,确保在long long中。
由于乘的数大于除的,故结果只会越来越大,超过N后,一定不会小于N。

代码

核心代码

#include "forTest.h"

#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>

#include <bitset>
using namespace std;



template<class T = int>
vector<T> Read(int n,const char* pFormat = "%d") {
	vector<T> ret(n);
	for(int i=0;i<n;i++) {
		scanf(pFormat, &ret[i]);	
	}
	return ret;
}

template<class T = int>
vector<T> Read( const char* pFormat = "%d") {
	int n;
	scanf("%d", &n);
	vector<T> ret;
	T d;
	while (n--) {
		scanf(pFormat, &d);
		ret.emplace_back(d);
	}
	return ret;
}

string ReadChar(int n) {
	string str;
	char ch;
	while (n--) {
		do
		{
			scanf("%c", &ch);
		} while (('\n' == ch));
			str += ch;
	}
	return str;
}
template<class T1,class T2>
void ReadTo(pair<T1, T2>& pr) {
	cin >> pr.first >> pr.second;
}

template<class INDEX_TYPE>
class CBinarySearch
{
public:
	CBinarySearch(INDEX_TYPE iMinIndex, INDEX_TYPE iMaxIndex) :m_iMin(iMinIndex), m_iMax(iMaxIndex) {}
	template<class _Pr>
	INDEX_TYPE FindFrist(_Pr pr)
	{
		auto left = m_iMin - 1;
		auto rightInclue = m_iMax;
		while (rightInclue - left > 1)
		{
			const auto mid = left + (rightInclue - left) / 2;
			if (pr(mid))
			{
				rightInclue = mid;
			}
			else
			{
				left = mid;
			}
		}
		return rightInclue;
	}
	template<class _Pr>
	INDEX_TYPE FindEnd(_Pr pr)
	{
		INDEX_TYPE leftInclude = m_iMin;
		INDEX_TYPE right = m_iMax + 1;
		while (right - leftInclude > 1)
		{
			const auto mid = leftInclude + (right - leftInclude) / 2;
			if (pr(mid))
			{
				leftInclude = mid;
			}
			else
			{
				right = mid;
			}
		}
		return leftInclude;
	}
protected:
	const INDEX_TYPE m_iMin, m_iMax;
};

class Solution {
public:
	long long Ans(int N) {
		auto Com = [&](int canSel, int sel) {
			if (canSel < sel) { return N + 1LL; }
			long long res = 1;
			for (int j = 1; j <= sel; j++) {
				res *= (canSel - sel + j);
				res /= j;
				if (res > N) { return N + 1LL; };
			}
			return res;
		};
		if (1 == N) { return 1; }
		long long ans = LLONG_MAX;
		for (int k = 16; k > 0; k--) {
			auto Check = [&](int mid) {
				return Com(mid, k) >= N;
			};
			int n = CBinarySearch<int>(k, N).FindFrist(Check);
			if (Com(n, k) == N) {
				ans = min(ans, (long long)(n + 1) * n / 2 + k + 1);
			}
		}
		return ans;
	}

};

int main() {
#ifdef _DEBUG
	freopen("a.in", "r", stdin);
#endif // DEBUG
	int N;	
	cin >> N;
	auto res = Solution().Ans(N);
	cout << res << std::endl;
#ifdef _DEBUG			
		/*Out(a, "a=");
		Out(b, "b=");*/
#endif			
	return 0;
}

单元测试

	TEST_METHOD(TestMethod11)
		{
			auto res = Solution().Ans(71523144);
			AssertEx(4956LL, res);
		}
		TEST_METHOD(TestMethod12)
		{
			auto res = Solution().Ans(1);
			AssertEx(1LL, res);
		}
		TEST_METHOD(TestMethod13)
		{
			auto res = Solution().Ans(6);
			AssertEx(13LL, res);
		}
		TEST_METHOD(TestMethod14)
		{
			auto res = Solution().Ans(2);
			AssertEx(5LL, res);
		}

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件架构师何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值