非线性控制2:反馈线性化

非线性控制:反馈线性化

输入-状态,输入-输出,内稳定,零动态,微分几何,李导数。这一部分会接触到更多的微分几何,有待进一步完善。

6.3

x ˙ 1 = s i n x 2 x ˙ 2 = x 1 4 c o s x 2 + u \begin{align} \dot{x}_1 &= sin x_2 \\ \dot{x}_2 &= x_1^4cosx_2+u \end{align} x˙1x˙2=sinx2=x14cosx2+u

输出线性化,可得:
u = − k 1 x ˙ 1 + k 1 x ˙ 1 , d − k 2 x 1 + k 2 x 1 , d + x ¨ 1 , d c o s x 2 − x 1 4 c o s x 2 u = \frac{-k_1\dot{x}_1 + k_1\dot{x}_{1,d}-k_2x_1+k_2x_{1,d}+\ddot{x}_{1,d}}{cosx_2} - x_1^4cosx_2 u=cosx2k1x˙1+k1x˙1,dk2x1+k2x1,d+x¨1,dx14cosx2
可见 x 2 x_2 x2是存在奇点的情况的(分母为0),这也会导致simulink连续情况的仿真失败,调整成离散时间求解器即可。为了更合理也可进行在分母加上0.001之类的操作,反而会使控制率更光滑。

在这里插入图片描述

结果:
在这里插入图片描述

6.4

x ˙ 1 = u x ˙ 2 + x 2 = ( 1 + x 2 + x 2 2 ) x 1 \begin{align} \dot{x}_1 &= u\\ \dot{x}_2 + x_2 &= (1 + x_2 +x_2^2)x_1 \end{align} x˙1x˙2+x2=u=(1+x2+x22)x1

x 1 = 0 x_1 = 0 x1=0是零动态,虽然 x 2 x_2 x2在零动态下依然稳定,但是本质上 x ˙ 2 = 1 + x ˙ 2 2 \dot{x}_2 = 1 + \dot{x}_2^2 x˙2=1+x˙22的原函数为 t a n t + C tant+C tant+C,也就是说在 0 − π / 2 0-\pi/2 0π/2这一时间范围,只要 x 1 x_1 x1大于1, x 2 x_2 x2会以大于 t a n t tant tant的速度发散。

6.5

线性方程的零点、零动态、内稳定、非最小相位之间的关系

零点右半平面 -> 零动态/内稳定不稳 -> 非最小相位
y = 1 a 0 + a 1 p + a 2 p 2 + p 3 [ b 0 + b 1 p ] u y = \frac{1}{a_0+a_1p+a_2p^2+p^3}[b_0+b_1p]u y=a0+a1p+a2p2+p31[b0+b1p]u
这个例子很好,要求 y = 0 y = 0 y=0 u u u发散与否取决于 u ˙ + b 0 b 1 p = 0 \dot{u}+\frac{b_0}{b_1}p = 0 u˙+b1b0p=0,所代表的 u u u是否发散,即取决于零点位置。

6.6

检验下述系统的输入-状态线性化
d d t [ x 1 x 2 x 3 ] = [ x 2 + x 2 2 + x 3 2 x 3 + s i n ( x 1 − x 3 ) x 3 2 ] + [ 1 0 1 ] u \frac{d}{dt} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 + x_2^2 + x_3^2\\ x_3+sin(x_1 - x_3)\\ x_3^2 \end{bmatrix} + \begin{bmatrix} 1\\0\\1 \end{bmatrix}u dtd x1x2x3 = x2+x22+x32x3+sin(x1x3)x32 + 101 u
能否由 z 1 = x 1 − x 2 z 2 = x 2 + x 2 2 z 3 = x 3 + s i n ( x 1 − x 3 ) + 2 x 2 [ x 3 + s i n ( x 1 − x 3 ) ] z_1 = x_1 - x_2\quad z_2 = x_2+x_2^2\quad z_3 = x_3+sin(x_1-x_3)+2x_2[x_3+sin(x_1-x_3)] z1=x1x2z2=x2+x22z3=x3+sin(x1x3)+2x2[x3+sin(x1x3)] 作为线性化状态。

反馈线性化需要对能控性条件以及对合条件判断,但是这个这么算就太复杂了,这也能看出来,哪怕是很基础的非线性,三阶系统,不借助软件,手算是十分做牢的。这个之间对 z z z求导数,满足上三角形式,并且 z 3 z_3 z3可以由 u u u表示,所以可以。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值