非线性控制:反馈线性化
输入-状态,输入-输出,内稳定,零动态,微分几何,李导数。这一部分会接触到更多的微分几何,有待进一步完善。
6.3
x ˙ 1 = s i n x 2 x ˙ 2 = x 1 4 c o s x 2 + u \begin{align} \dot{x}_1 &= sin x_2 \\ \dot{x}_2 &= x_1^4cosx_2+u \end{align} x˙1x˙2=sinx2=x14cosx2+u
输出线性化,可得:
u
=
−
k
1
x
˙
1
+
k
1
x
˙
1
,
d
−
k
2
x
1
+
k
2
x
1
,
d
+
x
¨
1
,
d
c
o
s
x
2
−
x
1
4
c
o
s
x
2
u = \frac{-k_1\dot{x}_1 + k_1\dot{x}_{1,d}-k_2x_1+k_2x_{1,d}+\ddot{x}_{1,d}}{cosx_2} - x_1^4cosx_2
u=cosx2−k1x˙1+k1x˙1,d−k2x1+k2x1,d+x¨1,d−x14cosx2
可见
x
2
x_2
x2是存在奇点的情况的(分母为0),这也会导致simulink连续情况的仿真失败,调整成离散时间求解器即可。为了更合理也可进行在分母加上0.001之类的操作,反而会使控制率更光滑。
结果:
6.4
x ˙ 1 = u x ˙ 2 + x 2 = ( 1 + x 2 + x 2 2 ) x 1 \begin{align} \dot{x}_1 &= u\\ \dot{x}_2 + x_2 &= (1 + x_2 +x_2^2)x_1 \end{align} x˙1x˙2+x2=u=(1+x2+x22)x1
x 1 = 0 x_1 = 0 x1=0是零动态,虽然 x 2 x_2 x2在零动态下依然稳定,但是本质上 x ˙ 2 = 1 + x ˙ 2 2 \dot{x}_2 = 1 + \dot{x}_2^2 x˙2=1+x˙22的原函数为 t a n t + C tant+C tant+C,也就是说在 0 − π / 2 0-\pi/2 0−π/2这一时间范围,只要 x 1 x_1 x1大于1, x 2 x_2 x2会以大于 t a n t tant tant的速度发散。
6.5
线性方程的零点、零动态、内稳定、非最小相位之间的关系
零点右半平面 -> 零动态/内稳定不稳 -> 非最小相位
y
=
1
a
0
+
a
1
p
+
a
2
p
2
+
p
3
[
b
0
+
b
1
p
]
u
y = \frac{1}{a_0+a_1p+a_2p^2+p^3}[b_0+b_1p]u
y=a0+a1p+a2p2+p31[b0+b1p]u
这个例子很好,要求
y
=
0
y = 0
y=0,
u
u
u发散与否取决于
u
˙
+
b
0
b
1
p
=
0
\dot{u}+\frac{b_0}{b_1}p = 0
u˙+b1b0p=0,所代表的
u
u
u是否发散,即取决于零点位置。
6.6
检验下述系统的输入-状态线性化
d
d
t
[
x
1
x
2
x
3
]
=
[
x
2
+
x
2
2
+
x
3
2
x
3
+
s
i
n
(
x
1
−
x
3
)
x
3
2
]
+
[
1
0
1
]
u
\frac{d}{dt} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 + x_2^2 + x_3^2\\ x_3+sin(x_1 - x_3)\\ x_3^2 \end{bmatrix} + \begin{bmatrix} 1\\0\\1 \end{bmatrix}u
dtd
x1x2x3
=
x2+x22+x32x3+sin(x1−x3)x32
+
101
u
能否由
z
1
=
x
1
−
x
2
z
2
=
x
2
+
x
2
2
z
3
=
x
3
+
s
i
n
(
x
1
−
x
3
)
+
2
x
2
[
x
3
+
s
i
n
(
x
1
−
x
3
)
]
z_1 = x_1 - x_2\quad z_2 = x_2+x_2^2\quad z_3 = x_3+sin(x_1-x_3)+2x_2[x_3+sin(x_1-x_3)]
z1=x1−x2z2=x2+x22z3=x3+sin(x1−x3)+2x2[x3+sin(x1−x3)] 作为线性化状态。
反馈线性化需要对能控性条件以及对合条件判断,但是这个这么算就太复杂了,这也能看出来,哪怕是很基础的非线性,三阶系统,不借助软件,手算是十分做牢的。这个之间对 z z z求导数,满足上三角形式,并且 z 3 z_3 z3可以由 u u u表示,所以可以。