1. 什么是反馈线性化
反馈线性化(Feedback Linearization)是一种控制策略,主要用于控制非线性系统。其核心思想是通过适当的反馈,使得一个非线性系统在控制器的作用下表现得像一个线性系统,从而简化控制器设计的复杂性。
2. 通俗解释
- 想象你正在驾驶一辆汽车,而这辆汽车的方向盘操作并不是线性的:当你转动方向盘一点点时,车的方向可能变化得很慢;但如果你转动大一些,车的方向变化得非常快。这种情况下,驾驶变得很难控制,因为方向盘的响应是非线性的。
- 为了让驾驶变得简单,你可以安装一个装置,这个装置能够根据你转动方向盘的角度,自动调整车轮的转向角度,使得每一次转动方向盘的结果都符合你预期的线性关系。这样一来,无论你转动方向盘多少,车子的反应都是可预测的、线性的。这就是反馈线性化的作用:通过调整系统的反馈,使一个非线性系统的行为变得像线性系统那样简单、易控。
3. 数学描述
在数学上,非线性系统的动态通常可以表示为一个非线性微分方程。而反馈线性化的目标是找到一个合适的状态变换和控制输入,使得在新的坐标系中,这个非线性系统的方程可以表示成一个线性微分方程。
对于一个非线性系统: x ˙ = f ( x ) + g ( x ) u \dot x = f(x) + g(x)u x˙=f(x)+g(x)u ,其中:
- x x x 是系统状态
- u u u 是控制输入
- f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 是关于状态 x x x 的非线性函数
4. 控制输入设计
在这个系统中,由于
f
(
x
)
f(x)
f(x) 和
g
(
x
)
g(x)
g(x)是非线性的,所以
x
˙
\dot x
x˙ 是非线性函数的组合,为了简化这个非线性系统,通过选择合适的控制输入
u
u
u ,使得系统动态表现为线性形式,假设控制输入
u
u
u被设计为
u
=
α
(
x
)
+
β
(
x
)
v
u = \alpha(x) + \beta(x) v
u=α(x)+β(x)v
其中:
- α ( x ) \alpha (x) α(x) 和 β ( x ) \beta (x) β(x) 是设计的非线性反馈函数
- v v v是新的虚拟控制输入(通常是线性控制器,如PID的输出)。
将该设计代入原非线性系统的动态方程
x
˙
=
f
(
x
)
+
g
(
x
)
u
\dot x = f(x) + g(x)u
x˙=f(x)+g(x)u
可得:
- x ˙ = f ( x ) + g ( x ) ( α ( x ) + β ( x ) v ) \dot x = f(x) + g(x) (\alpha (x) + \beta (x)v) x˙=f(x)+g(x)(α(x)+β(x)v)
- x ˙ = [ f ( x ) + g ( x ) α ( x ) ] + g ( x ) β ( x ) v \dot x = [f(x) + g(x)\alpha (x)] + g(x)\beta(x)v x˙=[f(x)+g(x)α(x)]+g(x)β(x)v
若选择 α ( x ) \alpha (x) α(x)和 β ( x ) \beta(x) β(x)使得
- f ( x ) + g ( x ) α ( x ) = A x f(x) + g(x)\alpha(x) = Ax f(x)+g(x)α(x)=Ax
- g ( x ) β ( x ) = B g(x)\beta(x) = B g(x)β(x)=B
通过这种选择,可以使系统的动态表现为线性的形式: x ˙ = A x + B v \dot x = Ax+Bv x˙=Ax+Bv
其中, A A A和 B B B是常数矩阵,如此,系统的控制问题就转化为一个线性系统的控制问题,大大简化了设计复杂度。
5. 为什么能线性化
通过沈择合适的
α
(
x
)
\alpha(x)
α(x) 和
β
(
x
)
\beta(x)
β(x) ,我们可以抵消系统中的非线性部分
f
(
x
)
f(x)
f(x) 和
g
(
x
)
g(x)
g(x) 的影响,使得系统
的动态在新的翰入
v
v
v 下表现为线性系统。
- α ( x ) \alpha(x) α(x)被设计用来抵消 f ( x ) f(x) f(x)中的非线性影响。
- β ( x ) \beta(x) β(x)被设计用来消除 g ( x ) g(x) g(x)中的非线性,使得控制输入与状态之间呈线性关系。
这样,通过反馈线性化设计,系统的氨杂非线性行为被转化为一个简单的线性形式,使得我们可以利
用成熟的线性控制理论来分析和设计控制器。