大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了。可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来找去都是自己早已研究过的序列。小明想既然找不到,那就自己来发明一个新的序列问题吧!小明想啊想,终于想出了一个新的序列问题,他欣喜若狂,因为是自己想出来的,于是将其新序列问题命名为“小明序列”。
提起小明序列,他给出的定义是这样的:
①首先定义S为一个有序序列,S={ A1 , A2 , A3 , ... , An },n为元素个数 ;
②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , ... , Aim },m为元素个数 ;
③其中Sub满足 Ai1 < Ai2 < Ai3 < ... < Aij-1 < Aij < Aij+1 < ... < Aim ;
④同时Sub满足对于任意相连的两个Aij-1与Aij都有 ij - ij-1 > d (1 < j <= m, d为给定的整数);
⑤显然满足这样的Sub子序列会有许许多多,而在取出的这些子序列Sub中,元素个数最多的称为“小明序列”(即m最大的一个Sub子序列)。
例如:序列S={2,1,3,4} ,其中d=1;
可得“小明序列”的m=2。即Sub={2,3}或者{2,4}或者{1,4}都是“小明序列”。
当小明发明了“小明序列”那一刻,情绪非常激动,以至于头脑凌乱,于是他想请你来帮他算算在给定的S序列以及整数d的情况下,“小明序列”中的元素需要多少个呢?
Input
输入数据多组,处理到文件结束;
输入的第一行为两个正整数 n 和 d;(1<=n<=10^5 , 0<=d<=10^5)
输入的第二行为n个整数A1 , A2 , A3 , ... , An,表示S序列的n个元素。(0<=Ai<=10^5)
Output
请对每组数据输出“小明序列”中的元素需要多少个,每组测试数据输出一行。
Sample Input
2 0 1 2 5 1 3 4 5 1 2 5 2 3 4 5 1 2
Sample Output
2 2 1
#include<bits/stdc++.h>
using namespace std;
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
const int MAX = 1e5 + 7;
int a[MAX << 2], dp[MAX], num[MAX];
void pushup(int rt){
a[rt] = max(a[rt << 1], a[rt << 1 | 1]);
}
void update(int rt, int l, int r, int pos, int v){
if(l == r){
a[rt] = max(a[rt], v);
return;
}
int mid = (l + r) >> 1;
if(pos <= mid) update(lson, pos, v);
else update(rson, pos, v);
pushup(rt);
}
int query(int rt, int l, int r, int x, int y){
if(x <= l && r <= y) return a[rt];
int mid = (l + r) >> 1;
int ans = 0;
if(x <= mid) ans = max(ans, query(lson, x, y));
if(mid < y) ans = max(ans, query(rson, x, y));
return ans;
}
int main(){
int n, k;
while(scanf("%d%d", &n, &k) != EOF){
int T = 0, ans = 0;
for(int i = 1; i <= n; i++){
scanf("%d", &num[i]);
num[i]++;
T = max(T, num[i]);
}
memset(dp, 0, sizeof dp);
memset(a, 0, sizeof a);
for(int i = 1; i <= n; i++){
if(i - k - 1 >= 1) update(1, 1, T, num[i - k - 1], dp[i - k - 1]);
if(num[i] == 1) dp[i] = 1;
else dp[i] = query(1, 1, T, 1, num[i] - 1) + 1;
ans = max(ans, dp[i]);
}
printf("%d\n", ans);
}
return 0;
}