基于脑机接口的人脑控制机械手臂

本文介绍了基于脑机接口(BCI)的脑控机械手臂技术,涉及EEG数据采集、预处理、深度学习模型(CNN+LSTM)训练,以及最终实现的高识别率和实时控制系统,使机械手臂能根据思维指令执行任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

脑机接口(BCI)就是研究如何让神经信号与外部机械交互的技术分为嵌入式和非嵌入式。

系统流程:

1,采集不同运行想象的脑电数据

2,脑电数据预处理

3,使用深度学习模型学习不同运行想象的脑电数据的差别,并作出分类。

4,将分类结果通过指令发给机械手臂

5,机械手臂运动

一,脑电采集

我只是研究了基于EEG的BCI,EEG是一种非侵入式的脑电采集手段,安全,成本低,采集的信息满足实验需求

数据采集设备为Neuroscan 64 通道脑电仪,采样率1000Hz(降采样到160)。实验通过scan4.5软件接受5中不同的脑电数据(左手握拳,右手握拳,左右手同时握拳,双脚并拢,静息),E-prime给运动打标签,采集数据时四类运动每类运动做4秒(想象运动2次)之后4秒静息。总共做40次每类10次,每次采集产生160秒的运行数据和160秒的静息数据



二,数据预处理

脑电分为诱发脑电EP和自发脑电EEG,




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值