脑机接口(BCI)就是研究如何让神经信号与外部机械交互的技术分为嵌入式和非嵌入式。
系统流程:
1,采集不同运行想象的脑电数据
2,脑电数据预处理
3,使用深度学习模型学习不同运行想象的脑电数据的差别,并作出分类。
4,将分类结果通过指令发给机械手臂
5,机械手臂运动
一,脑电采集
我只是研究了基于EEG的BCI,EEG是一种非侵入式的脑电采集手段,安全,成本低,采集的信息满足实验需求
数据采集设备为Neuroscan 64 通道脑电仪,采样率1000Hz(降采样到160)。实验通过scan4.5软件接受5中不同的脑电数据(左手握拳,右手握拳,左右手同时握拳,双脚并拢,静息),E-prime给运动打标签,采集数据时四类运动每类运动做4秒(想象运动2次)之后4秒静息。总共做40次每类10次,每次采集产生160秒的运行数据和160秒的静息数据
二,数据预处理
脑电分为诱发脑电EP和自发脑电EEG,