主动降噪的核心思想就是信号经过滤波器之后能产生信号对消,原理说起来简单,实现起来及其困难,下面对主动降噪ANC的原理进行阐述。
此处最为关键的是数字滤波器的设计,数字滤波器与输入信号时域上的卷积就是频域上相乘,而滤波器一般采用有限冲激响应滤波器,其对应的的系数(抽头):
滤波器的输入信号为:
在第n时刻FIR滤波器的输出y(n)可表示为:
L为滤波器的阶数或长度,对上式进行Z变换:
那么,此时系统中的误差信号为:
自适应滤波器的作用就是不断调整自适应滤波器系数向量w(n)使误差信号 达到某种要求(如均方值达到最小),在这个过程中,滤波器系数w(n)是一个时变量,由自适应算法来实时更新。
其对应MATLAB的实现为:
function [yn,W,en]=FXLMS(xn,dn,M,mu,itr)
% LMS(Least Mean Squre)算法,自适应滤波器;
% 输入参数:
% xn 输入的信号序列 (列向量)
% dn 所期望的响应序列 (列向量) 该值一般为0;
% M 滤波器的阶数 (标量) 滤波器的阶数,就是指过滤谐波的次数,其阶数越高,滤波效果就越好
% mu 收敛因子(步长) (标量) 要求大于0,小于xn的相关矩阵最大特征值的倒数 ;
% 控制着收敛步长,决定迭代的稳定性和收敛性;0 < mu < 1/rho_max(laimde)
% itr 迭代次数 (标量) 默认为xn的长度,M<itr<length(xn)
% 输出参数:
% W 滤波器的权值矩阵 (矩阵)
% 大小为M : itr,
% en 误差序列(itr : 1) (列向量)
% yn 实际输出序列 (列向量)
% 参数个数必须为4个或5个
if nargin == 4 % 4个时,递归迭代的次数为xn的长度
itr = length(xn);
elseif nargin == 5 % 5个时,满足M<itr<length(xn)
if itr>length(xn) || itr<M
error('迭代次数过大或过小!');
end
else
error('请检查输入参数的个数!');
end
% 初始化参数
en = zeros(itr,1); % 误差序列,en(k)表示第k次迭代时预期输出与实际输入的误差
W = zeros(M,itr); % 每一行代表一个加权参量,每一列代表-次迭代,初始为0
% 迭代计算
for k = M:itr % 第k次迭代,保证输入延迟后的信号有效,只有iter-M次迭代;
x = xn(k:-1:k-M+1); % 将输入信号延迟,使得滤波器的每个抽头都有输入
y = W(:,k-1).' * x; % 滤波器的输出
en(k) = dn(k) - y ; % 第k次迭代的误差
% 滤波器权值计算的迭代式
W(:,k) =0.9* W(:,k-1) - 2*mu*en(k)*x ; % 滤波器系数更新向量,0.9的系数可以防止泄露;
end
% 求最优时滤波器的输出序列
yn = inf * ones(size(xn));
for k = M:length(xn)
x = xn(k:-1:k-M+1);
yn(k) = W(:,end).'* x;
end
当然,由于该算法收敛条件、收敛速度和均方误差的影响,以及未考虑次级通道,所以该算法并不能直接用于主动噪声控制系统中。下一步将FXLMS算法的原理。