模型预测控制MPC算法的讲解-案例(C语言代码)

模型预测控制(MPC)是一种先进的控制策略,它基于系统模型预测未来行为并优化控制输入。该文详细介绍了MPC的基本原理,包括建立模型、设定目标和约束、求解优化问题以及重复优化过程,并通过C语言代码示例展示了一个简化版的MPC框架。此外,还探讨了MPC在汽车动态控制等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、模型预测控制MPC的基本原理

1.1 建立模型

1.2 设定目标和约束条件

1.3 求解优化问题

1.4 应用控制输入

1.5 重复优化

二、模型预测控制MPC的特点

三、应用场景

四、应用案例

一个MPC算法的简化版框架:

4.1 案例系统模型

4.2 控制目标和当前状态

4.3 控制策略(最优化)

 4.4 控制输入和重复优化

复杂些的模型案例:

模型预测控制的优化问题:


模型预测控制(Model Predictive Control,MPC)是一种高级的控制策略,用于连续或离散时间系统的控制。MPC的核心思想是利用系统的数学模型预测未来一段时间内的系统行为,然后基于这些预测来优化控制输入,以实现对系统的优化控制。MPC在工业过程控制、汽车动态控制、航空航天和机器人技术等领域有广泛应用。

一、模型预测控制MPC的基本原理

包括以下的步骤:

1.1 建立模型

  首先,需要建立一个描述系统动态行为的数学模型。这个模型可以是线性的或非线性的,它用于预测</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heda3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值