概率论与数理统计-条件概率题目1-两次取球问题(有放回)

题目:

设袋中装有r只红球,t只白球.每次自袋中任取一只球,观察其颜色例3然后放回,并再放入a只与所取出的那只球同色的球.若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率.

解答:

涉及到条件概率和多次独立事件的概率计算。我们需要计算的是四个事件同时发生的概率:前两次取到红球,后两次取到白球。

设初始时刻袋中红球和白球的总数为:N=r+t。

1)当第一次取到红球,此时红球为r,白球为t。

     取球完成后,袋中的红球变为r+a,白球数量不变。此时总球数N1​=N+a=r+t+a。

2)第二次取到红球,因为第一次已经取到了红球并放入 a 个同色球,所以袋中红球数量为 r+a,白球数量不变。

    取球完成后袋中的红球变为r+2a,白球数量不变。此时总球数N1​=N+a=r+t+2a。

3)第三次取到白球,由于前两次取的是红球,所以红球数量为r+2a,白球数量 t。

     取球完成后袋中的红球变为r+3a,白球数量不变。此时总球数N1​=N+a=r+t+3a。

4)第四次取到白球,袋中红球数量为 r+2a,白球数量为 t+a。

    取球完成后袋中的红球变为r+2a,白球数量 t+2a。此时总球数N1​=N+a=r+t+4a。

每次取球是独立的,所以这四次取球的概率是彼此独立的,最终的概率是每次取球概率的乘积。

事件分别为:

则概率为:

                                    P =\frac{r}{N}*\frac{r+a}{N1}*\frac{t}{N2}*\frac{t+a}{N3}

                                   P =\frac{r}{r+t}*\frac{r+a}{r+t+a}*\frac{t}{r+t+2a}*\frac{t+a}{r+t+3a} 

         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heda3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值