题目:
设袋中装有r只红球,t只白球.每次自袋中任取一只球,观察其颜色例3然后放回,并再放入a只与所取出的那只球同色的球.若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率.
解答:
涉及到条件概率和多次独立事件的概率计算。我们需要计算的是四个事件同时发生的概率:前两次取到红球,后两次取到白球。
设初始时刻袋中红球和白球的总数为:N=r+t。
1)当第一次取到红球,此时红球为r,白球为t。
取球完成后,袋中的红球变为r+a,白球数量不变。此时总球数N1=N+a=r+t+a。
2)第二次取到红球,因为第一次已经取到了红球并放入 a 个同色球,所以袋中红球数量为 r+a,白球数量不变。
取球完成后袋中的红球变为r+2a,白球数量不变。此时总球数N1=N+a=r+t+2a。
3)第三次取到白球,由于前两次取的是红球,所以红球数量为r+2a,白球数量 t。
取球完成后袋中的红球变为r+3a,白球数量不变。此时总球数N1=N+a=r+t+3a。
4)第四次取到白球,袋中红球数量为 r+2a,白球数量为 t+a。
取球完成后袋中的红球变为r+2a,白球数量 t+2a。此时总球数N1=N+a=r+t+4a。
每次取球是独立的,所以这四次取球的概率是彼此独立的,最终的概率是每次取球概率的乘积。
事件分别为:
则概率为: