c++ 线性代数 克·施密特(Gram Schmidt)

        克·施密特(Gram-Schmidt)正交化方法是一种将一组线性无关的向量转换为一组正交(垂直)向量的技术。该方法是线性代数中常用的工具,它的核心思想是将一组线性无关的向量集合通过减去它们在前面向量方向上的投影来得到一组正交的向量。

具体步骤如下:

  1. 给定一组线性无关的向量 {v₁, v₂, ..., vn}。
  2. 将第一个向量v₁单位化得到u₁: u₁ = v₁ / ||v₁||,其中||v₁||是v₁的模。
  3. 对于i从2到n: a. 计算第i个向量vᵢ与前i-1个单位化向量u₁, u₂, ..., uᵢ₋₁之间的投影: projᵢ = (vᵢ · u₁)u₁ + (vᵢ · u₂)u₂ + ... + (vᵢ · uᵢ₋₁)uᵢ₋₁ b. 计算第i个正交向量uᵢ: uᵢ = vᵢ - projᵢ c. 将uᵢ单位化: uᵢ = uᵢ / ||uᵢ||

        通过这种方法,我们可以从一个线性无关的向量集合构造出一组正交的基向量,这在解决许多数学和工程问题时非常有用。Gram-Schmidt方法在解决线性方程组、矩阵分解、特征值问题等方面具有广泛的应用。

示例:

linearalgebra.h:

/* ----------------------- norm ----------------------- */
/*  Given an array and its length, this function 
    computes the 2-norm of the array.
    
    Input variables:
        x     : pointer to array for which the 2-norm should
                 be computed.
        length: number of entries in x.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.      */

double norm (double * x, int length) {
    int i, length5;
    double a, sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i] * x[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * x[i] + x[i + 1] * x[i + 1] + x[i + 2] * x[i + 2]
                           + x[i + 3] * x[i + 3] + x[i + 4] * x[i + 4];
    }

    return sqrt(sum);
}


/* ----------------------- vec_copy ----------------------- */
/*  Given two arrays of the same length and their length, 
    this function stores the values from the first array
    in the second array.
    
    Input variables:
        x     : pointer to array whose entries are to be
                 copied.
        y     : pointer to array in which the components
                 of x are to be stored.
        length: number of entries in x and in y.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

void vec_copy (double * x, double * y, int length) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i];
    }
    for(; i < length; i += 5) {
        y[i] = x[i];
        y[i + 1] = x[i + 1];
        y[i + 2] = x[i + 2];
        y[i + 3] = x[i + 3];
        y[i + 4] = x[i + 4];
    }
}


/* ------------------- partialvec_copy ------------------- */
/*  Given two arrays, the length of the second array, and
    an index this function stores the values from the
    subarray x[index : index + length] in the array
    y[0 : length].
    
    Input variables:
        x     : pointer to array whose entries are to be
                 copied.
        y     : pointer to array in which the components
                 of x are to be stored.
        length: number of entries in y.
        index : starting index of subarray of x to be
                copied to y.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array {0, 0, 0}, 
    length = 3, and index = 2. Then after executing
    partialvec_copy(x, y, 3, 2), the array pointed to by 
    y is now {3, 4, 5}.                         

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.         */

void partialvec_copy (double * x, double * y, int length, int index) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i + index];
    }
    for(; i < length; i += 5) {
        y[i] = x[i + index];
        y[i + 1] = x[i + index + 1];
        y[i + 2] = x[i + index + 2];
        y[i + 3] = x[i + index + 3];
        y[i + 4] = x[i + index + 4];
    }
}


/* ----------------------- scalar_div ----------------------- */
/*  Given two arrays of the same length, their length, and a
    scalar value this function divides the values from the 
    first array by the scalar value and stores the computed
    number in the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 divided by r and stored in second array, y.
        r     : scalar used in division.
        length: number of entries in x and in y.
        y     : pointer to array in which the components
                 of x are to be stored.


    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.            */

void scalar_div (double * x, double r, int length, double * y) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i]/r;
    }
    for(; i < length; i += 5) {
        y[i] = x[i]/r;
        y[i + 1] = x[i + 1]/r;
        y[i + 2] = x[i + 2]/r;
        y[i + 3] = x[i + 3]/r;
        y[i + 4] = x[i + 4]/r;
    }
}


/* ----------------------- scalar_sub ----------------------- */
/*  Given two arrays of the same length, their length, and a
    scalar value this function multiplies the values from the 
    first array by the scalar value and then subtracts the 
    computed components from the components the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 multiplied by r then subtracted from the
                 components of the second array, y.
        r     : scalar used in multiplication.
        length: number of entries in x and in y.
        y     : pointer to array in which the components
                 of x are to be stored.


    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.            */

void scalar_sub (double * x, double r, int length, double * y) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] -= r * x[i];
    }
    for(; i < length; i += 5) {
        y[i] -= r * x[i];
        y[i + 1] -= r * x[i + 1];
        y[i + 2] -= r * x[i + 2];
        y[i + 3] -= r * x[i + 3];
        y[i + 4] -= r * x[i + 4];
    }
}


/* --------------------- partialscalar_sub --------------------- */
/*  Given two arrays, the length of the second array, a scalar 
    value, and an index, this function multiplies the values 
    starting at the given index from the first array by the 
    scalar value and then subtracts the computed components from 
    the components the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 multiplied by r then subtracted from the
                 components of the second array, y.
        r     : scalar used in multiplication.
        length: number of entries in y.
        index : 
        y     : pointer to array in which the components
                 of x are to be stored.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array {0, 0, 0}, 
    length = 3, r = -1, and index = 2. Then after executing
    partialscalar_sub(x, -1, 3, 2, y), the array pointed to 
    by y is now {-3, -4, -5}. 

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.               */

void partialscalar_sub (double * x, double r, int length, 
                                              int index, double * y) 
{
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i + index] -= r * x[i];
    }
    for(; i < length; i += 5) {
        y[i + index] -= r * x[i];
        y[i + index + 1] -= r * x[i + 1];
        y[i + index + 2] -= r * x[i + 2];
        y[i + index + 3] -= r * x[i + 3];
        y[i + index + 4] -= r * x[i + 4];
    }
}


/* --------------------- dot_product --------------------- */
/*  Given two arrays of the same length and their length, 
    this function returns the dot product of the two 
    arrays.
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in x and in y.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.         */

double dot_product (double * x, double * y, int length) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * y[i] + x[i + 1] * y[i + 1] + x[i + 2] * y[i + 2]
                           + x[i + 3] * y[i + 3] + x[i + 4] * y[i + 4];
    }

    return sum;
}


/* ------------------ partialdot_product ------------------ */
/*  Given two arrays of the same length, their length, and
    an index this function returns the dot product of the 
    two subarrays x[index : length] and y[index : length].
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in x and in y.
        index : starting index for subarrays.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4}, y is a pointer to the array {5, 6, 7, 8}, 
    length = 4, and index = 2. Then the value returned by
    executing partialdot_product(x, y, 4, 2) is 53, which
    is computed by
        x[2] * y[2] + x[3] * y[3] = 3 * 7 + 4 * 8
                                  = 21 + 32
                                  = 53.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

double partialdot_product (double * x, double * y, int length, int index) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = index; i < length5; i++) {
        sum += x[i] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * y[i] + x[i + 1] * y[i + 1] + x[i + 2] * y[i + 2]
                           + x[i + 3] * y[i + 3] + x[i + 4] * y[i + 4];
    }

    return sum;
}


/* -------------------- subdot_product -------------------- */
/*  Given two arrays, the length of the second array, and
    an index this function returns the dot product of the 
    two subarrays x[index : index + length] and 
    y[0 : length]. It is necessary that index + length is
    at most the length of the first array.
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in y.
        index : starting index for subarray of x.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array 
    {-1, -2, -3}, length = 3, and index = 2. Then the value 
    returned by executing subdot_product(x, y, 3, 2) is 53, 
    which is computed by
            x[2] * y[0] + x[3] * y[1] + x[4] * y[2] 

          =  3   *  -1  +  4   *  -2  +  5   *  -3

          = -    3      -      8      -      15

          = -26.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

double subdot_product (double * x, double * y, int length, int index) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i + index] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i + index] * y[i] + x[i + index + 1] * y[i + 1] 
                                   + x[i + index + 2] * y[i + 2]
                                   + x[i + index + 3] * y[i + 3]
                                   + x[i + index + 4] * y[i + 4];
    }

    return sum;
}

gramSchmidt.cpp:

#include <algorithm>
#include <cmath>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include "linearalgebra.h"


/* ----------------------- gramSchmidt ----------------------- */
/*  Given a matrix A of dimension m by n, this algorithm 
    computes a QR decomposition of A, where Q is a unitary 
    m by n matrix and R is a n by n upper triangular matrix
    and A = QR.    
    
    Input variables:
        a   : pointer to array of arrays, the ith array of
                which should correspond to the ith column of the 
                matrix A. During the algorithm, the columns of Q 
                will replace the columns of A.
        r   : pointer to array of arrays in which the ith 
                column of the upper triangular matrix R will be 
                stored in the ith subarray of r.
        m   : number of columns in A.
        n   : number of rows in A.
        thin: TRUE  => thin QR factorization computed
              FALSE => full QR factorization computed

    Features: This implementation has time complexity O(m n^2)
    and requires O(1) additional memory.

    Remarks: Due to the nature of the problem, if A is nearly
    rank-deficient then the resulting columns of Q may not
    exhibit the orthogonality property.                        */

void gramSchmidt (double ** a, double ** r, int m, int n, bool full) {
    int i, j;
    double anorm, tol = 10e-7;

    for(i = 0; i < n; i++) {
        r[i][i] = norm(a[i], m);                  // r_ii = ||a_i||

        if(r[i][i] > tol) {
            scalar_div(a[i], r[i][i], m, a[i]);   // a_i = a_i/r_ii
        }
        else if(i == 0) { // set a[0] = [1 0 0 ... 0]^T
            a[i][0] = 1;
            for(j = 1; j < m; j++) {
                a[i][j] = 0;
            }
        }
        else{ // need to choose a_i orthogonal to < a_1, ... a_{i-1} >
            for(j = 0; j < m; j++) {
                a[i][j] = -a[0][i] * a[0][j];
            }
            a[i][i] += 1;

            for(j = 1; j < i; j++) {
                scalar_sub(a[j], a[j][i], m, a[i]);
            }

            anorm = norm(a[i], m);
            scalar_div(a[i], anorm, m, a[i]);
        }

        for(j = i+1; j < n; j++) {
            r[j][i] = dot_product(a[i], a[j], m); // r_ij = a_i*a_j
            scalar_sub(a[i], r[j][i], m, a[j]);   // a_j -= r_ij a_i
        }
    }

    /* if full QR factorization requested, we choose remaining 
       columns of Q so that the m columns of Q form an 
       orthonormal set                                          */
    if(full) {
        for(; i < m; i++) {
            for(j = 0; j < m; j++) {
                    a[i][j] = -a[0][i] * a[0][j];
                }
                a[i][i] += 1;
    
                for(j = 1; j < i; j++) {
                    scalar_sub(a[j], a[j][i], m, a[i]);
                }
    
                anorm = norm(a[i], m);
                scalar_div(a[i], anorm, m, a[i]);
        }
    }
}


int main () {
    int i, j, n, m, q_n, r_m;
    bool full;
    double x;

    /* let user set the dimension of matrix A */
    std::cout << "Enter the dimension m (where A is a m by n matrix): ";
    std::cin >> m;
    std::cout << "Enter the dimension n (where A is a m by n matrix): ";
    std::cin >> n;

    if(m != n) {
        /* check if m < n */
        if(m < n) {
            printf("For a successful factorization, this implementation "
                   "requires n <= m.\nTerminating program.\n");
            return 0;
        }
        /* let user choose either full or thin QR factorization */
        std::cout << "Enter either 0 to compute a thin QR factorization"
                  << std::endl;
        std::cout << "          or 1 to compute a full QR factorization: ";
        std::cin >> full;
    }
    else { // else m == n so full and thin QR factorization are identical */
        full = 1;
    }

    /* set dimensions of matrices Q and R based on full or thin QR */
    if(full) { // Q is m by m and R is m by n
        q_n = m;
        r_m = m;
    }
    else { // Q is m by n and R is n by n
        q_n = n;
        r_m = n;
    }

    /* allocate memory for the matrices A and R */
    double ** a = new double*[q_n];
    double ** r = new double*[n];
    for(i = 0; i < n; i++) {
        a[i] = new double[m];
        r[i] = new double[r_m];
    }
    for(; i < q_n; i++) {
        a[i] = new double[m];
    }

    /* initialize the values in matrix A (only n columns regardless of
       thin QR or full QR) */
    for(i = 0; i < n; i++) {
        for(j = i; j < m; j++) {
            a[i][j] = j - i + 1; // this choice of values was arbitrary
        }
    }

    /* print the matrix A before calling gramSchmidt */
    std::cout << "A = " << std::endl;
    for(i = 0; i < m; i++) {
        for(j = 0; j < n; j++) {
            printf("%9.6lg ", a[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* execute gramSchmidt to compute QR factorization */
    gramSchmidt(a, r, m, n, full);

    /* print the matrix Q resulting from gramSchmidt */
    std::cout << "Q = " << std::endl;
    for(i = 0; i < m; i++) {
        for(j = 0; j < q_n; j++) {
            if(a[j][i] >= 0) {
                std::cout << " ";
            }
            printf("%9.6lg ", a[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* print the matrix R resulting from gramSchmidt */
    std::cout << "R = " << std::endl;
    for(i = 0; i < r_m; i++) {
        for(j = 0; j < n; j++) {
            printf("%9.6lg ", r[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* print numerical evidence that columns of Q are orthonormal */
    printf("Numerical verification that {q_1, ..., q_%i} is an "
           "orthonormal set:\n", q_n);
    for(i = 0; i < q_n; i++) {
        for(j = i; j < q_n; j++) {
            x = dot_product(a[i], a[j], m);
            printf("q_%i * q_%i = %lg\n", i + 1, j + 1, x);
        }
    }
    
    /* free memory */
    for(i = 0; i < n; i++) {
        delete[] a[i];
        delete[] r[i];
    }
    for(; i < q_n; i++) {
        delete[] a[i];
    }
    delete[] a;  
    delete[] r;

    return 0;       // exit main
}

 

  • 21
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值