因为傅立叶变换之后的结果虽然长度和原来数据一样 但是前半部分和后半部分结果是共轭对称的 如果只考虑幅度的画,前后两半是关于中心对称的 正真有意义的就是0到采样频率一半的数据,后半和前半的信息是一样的 所以就只取用结果的1到N/2,也就是前一半的数据 根据变换前后能量相等,原来信号时域上的能量积分和后来信号频域上的积分应该相等 由于只取了一半,所以频域的结果能量的积分就会减少一半 为了拟补这减少的一半,将半信号的幅度根据对称加到前半 所以先取前一半的信号,然后在幅度上乘以2,也就拟补了截取一半损失的能量 最后,还要将信号除以N的原因是,傅立叶变换是个积分变换 写成数学形式的话,是 f(x)dx的积分,实际上函数和自变量微分量dx乘积的积分 而我们用离散信号去计算的时候,只是信号的求和没有乘上x的增量 你可以想像,同样一个信号,如果一个用采样频率Fs采样,得到N的数据 一个用2*Fs频率采样,就会得到2*N点数据 对着两个信号做离散的傅立叶变换, 采样频率高,数据点多的信号得到的数值就会比采样频率低数据点少的信号大一倍 为了修正这个问题,所以最终结果除以N 实际上,就是加入信号的总时间长度是1,那么N个点,每个点的采样间隔就是1/N 刚才说的计算积分的时候应该乘以积分间隔 所以最后的傅立叶变换结果就要乘以1/N,也就是除以N
n*fs/N
最新推荐文章于 2022-05-07 20:55:18 发布