#pragma once
#include <iostream>
#include <assert.h>
using namespace std;
template <class K,class V>
struct AVLTreeNode
{
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
pair <K, V> _kv;
int _bf; //balance factor 平衡因子
AVLTreeNode(const pair<K,V>& kv)
:_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_kv(kv)
,_bf(0)
{}
};
template <class K, class V>
struct AVLTree
{
typedef AVLTreeNode<K, V> node;
public:
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new node(kv);
return true;
}
node* cur = _root;
node* parent = nullptr;
//先找到插入的位置
while (cur)
{
if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;
}
}
//找到对应节点后进行链接
cur = new node(kv);
if (kv.first < parent->_kv.first)
{
parent->_left = cur;
}
else
{
parent->_right = cur;
}
cur->_parent = parent;
//插入结束后,需要控制平衡,平衡是通过平衡因子来看的,所以插入完第一步先更新平衡因子
while (parent)//由于最坏情况可能会一直向上更新到跟节点,所以这里用parent不为空
{
//先更新parent
if (cur == parent->_left)
{
parent->_bf++;
}
else if (cur == parent->_right)
{
parent->_bf--;
}
//向上更新
if (parent->_bf == 0)
{
break;
}
else if (abs(parent->_bf) == 1)
{
parent = parent->_parent;
cur = cur->_parent;
}
else if (abs(parent->_bf) == 2)
{
//说明parent所在子树已经不平衡,需要旋转处理
if (parent->_bf == 2 && cur->_bf == 1)
{
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == -1)
{
RotateR(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)
{
RotateLR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)
{
RotateRL(parent);
}
else
{
assert(false);
}
break;
}
else
{
assert(false);//这里由于程序正常的话是不会走到这一行的,所以如果报错一定是平衡因子模块出现了问题
}
}
return true;
}
private:
node* _root = nullptr;
void RotateL(node* parent)
{
//这里需要分类讨论一共有两种情况
//1.parent是根节点,需要更改根节点
//2.parent是子树,需要更改原parent的上一层指向
node* subr = parent->_right;
node* subrl = subr->_left;
node* ppnode = parent->_parent;
subr->_left = parent;
parent->_right = subrl;
parent->_parent = subr;
if (subrl)//subrl有可能为空
{
subrl->_parent = parent;
}
//1.根节点情况
if (_root == parent)
{
_root = subr;
subr->_parent = nullptr;
}
//2.parent是子树,需要更改parent的上一层节点的孩子指向
else
{
//判断ppnode指向左还是右
if (ppnode->_left == parent)
{
ppnode->_left = subr;
}
else
{
ppnode->_right = subr;
}
subr->_parent = ppnode;
}
subr->_bf = parent->_bf = 0;
}
void RotateR(node* parent)
{
//这里同左旋转
node* subl = parent->_left;
node* sublr = subl->_right;
node* ppnode = parent->_parent;
subl->_right = parent;
parent->_parent = subl;
parent->_left = sublr;
if (sublr)
{
sublr->_parent = parent;
}
if (_root == parent)
{
_root = subl;
subl->_parent = nullptr;
}
else
{
if (ppnode->_left == parent);
{
ppnode->_left = subl;
}
else
{
ppnode->_right = subl;
}
subl->_parent = ppnode;
}
subl->_bf = parent->_bf = 0;
}
void RotateLR(node* parent)
{
node* subl = parent->_left;
node* sublr = subl->_right;
int bf = sublr->_bf;
RotateL(parent->_left);
RotateR(parent);
sublr->_bf = 0;
if (bf == 1)
{
parent->_bf = 0;
subl->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 1;
subl->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = 0;
subl->_bf = 0;
}
else
{
assert(false);
}
}
void RotateRL(node* parent)
{
node* subr = parent->_right;
node* subrl = subr->_left;
int bf = subrl->_bf;
RotateR(parent->_right);
RotateL(parent);
subrl->_bf = 0;
if (bf == 1)
{
subr->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
subr->_bf = 1;
parent->_bf = 0;
}
else if(bf == 0)
{
parent->_bf = 0;
subr->_bf = 0;
}
}
};
定义:
AVL树的概念
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii
和E.M.Landis在1962年
发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右
子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均
搜索长度
特点:
1.它的左右子树都是AVL树
2.左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
更新平衡因子规则:
1.如果cur是右节点,则parent->_bf ++,如果cur是左节点,则parent->_bf--
2.更新完parent的平衡因子之后,还需要考虑是否需要继续向上更新parent的父节点平衡因子。是否更新取决于高度是否发生变化,所以这里需要分类讨论。
(1)parent->_bf == 1/-1
这说明原来的平衡因子为0,现在插入之后经过++或者--变成1/-1。因此原来的左右子树高度相等,插入后高度发生变化,则需要继续向上更新平衡因子。
(2)parent->_bf == 0,
这说明原来的平衡因子为1/-1,现在插入后经过加减变成0。因此原来的左右子树有一边高一边低,插入后高度相等没有发生变化,则不需要继续向上更新平衡因子。
(3)parent->_bf == 2/-2
这说明原来的平衡因子为1/-1,现在插入后经过加减变成2/-2.因此原来的左右子树也是有一边高一边低,不同的是插入后高度发生变化,打破了平衡,则parent所在子树需要旋转处理。
旋转规则:
1.旋转后让子树平衡
2.旋转后保持搜索树规则
如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:
1. 新节点插入较高左子树的左侧---左左:右单旋
在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在
2. 60可能是根节点,也可能是子树
如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树
2. 新节点插入较高右子树的右侧---右右:左单旋
3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再
考虑平衡因子的更新
4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋
同情况3
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑
1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
当pSubR的平衡因子为1时,执行左单旋
当pSubR的平衡因子为-1时,执行右左双旋
2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
当pSubL的平衡因子为-1是,执行右单旋
当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新