甲: 方程根式可解的数学定义:
就是一个一元N次方程的解如果可以使用方程的系数经过加减乘除和开方以及它们的组合运算表达出来,就是可以根式求解的;
如果不能以这种方式表达,那就是不可以根式求解的。
这样的定义虽然从语言和表达的角度来说没有歧义,但是从数学的角度来说,还不够清晰。
先来几个铺垫:
1. 有理数域是最小的数域. 记为 Q
1. 数域必有加法单元0,乘法单元1
2. 由加法封闭性,n 个1 相加为n, 则自然数N 在域内.
3. 再有加法的逆元得出-n 在域内, 于是整数Z 在域内.
4. 由乘法存在逆元,得1/n 在域内, m个1/n 相加,m/n 也在域内,于是有理数Q在域内
于是,Q就是最小的域了.
2. 扩域:
把某个域F中添加进一个或几个不属于这个域的元素,在不改变原来域的“加法”和“乘法”的条件下,
按照域的定义形成的新域E被称为原来域的扩域,记为E/F。
例如: 有理数域扩张根号2, 记为Q(√2)
扩域之后, a+b√2 就构成了一个比Q大, 比R小的数域
于是还可以构建Q(√3) 域, (注,根号2经过有理运算是造不出根号3的).
构造2开三次方域及其它各种各样的域.
像这种加进来一个元素,形成扩域的方法叫纯扩域. 最常见的纯扩域方式是把一个数开m次方扩进来.
因为这个数往往不能通过现有的元素通过4则运算得到.
3. 什么是根式塔?
根式塔:不断扩域形成的域列, F = F1 ⊆ F2 ⊆ F3 .... ⊆ Fr (i=1,2, …,r) 如果每次扩域都是一个纯扩域,则称此域列为一个根式塔。
4. 根式可解的定义:
设一元多次方程f(x)的全部系数都包含在域F之内,此方程的全部根都包含在域E之内,且E是包含f(x)全部根的最小域(此时称E为F上多项式f(x)的根域),
如果存在根式塔 F = F1 ⊆ F2 ⊆ F3 .... ⊆ Fr (i=1,2, …,r) 且 E ⊆ Fr 称域F上的方程f(x)根式可解。
用这种定义来表达 根都是可以带根号表示的. 根域E是系数域F的正规扩域.
定义是严谨的,表达是罗嗦的.
乙: 伽罗瓦群:
E/F是扩域, 且E是系数在F内的某个多项式方程的根域,E上全部自同构映射的集合Aut(E)中使F中元素不变的那些映射形成的子集构成Aut(E)的一个子群,
称为E在F上的伽罗瓦群,记为G(E/F).
可理解为根域下的一个正规子群为伽罗华群.
丙:伽罗华对应:
假设存在一个域列 F = F1 ⊆ F2 ⊆ F3 .... ⊆ Fr (i=1,2, …,r) 且 E ⊆ Fr
于是存在一组伽罗瓦群G(E/Fi) 这组伽罗瓦群都是 G(E/F) 的子群,而且可以证明每个G(E/F) 的子群一定对应着一个
E 的子域,这种对应是一一对应。这个神奇的对应被称做伽罗瓦对应。
通过伽罗瓦对应,我们把对复杂的域列问题的研究转换到了对伽罗瓦群的子群列的研究上,这就是打开方程根式可解的金钥匙。
伽罗瓦证明了,相邻Fi 之间都是正规扩域等价于对应的相邻伽罗瓦群是正规子群。
正规子群意味着商集合成群,或者说相邻伽罗瓦群的商群存在,如果这个商群是可换群(群内的“乘法”满足交换律),那么这样的伽罗瓦群被称为可解群。
通过进一步复杂的证明可以得到,即方程的根式可解等价于方程的伽罗瓦群为可解群!