初等数学常用公式

因式分解(Factorization)

a 2 − b 2 = ( a + b ) ( a − b ) a 2 ± 2 a b + b 2 = ( a ± b ) 2 a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a n − b n = ( a − b ) ∑ i = 1 n a n − i b i − 1 a^2-b^2=(a+b)(a-b) \\ a^2\pm 2ab+b^2=(a\pm b)^2 \\ a^3+b^3=(a+b)(a^2-ab+b^2) \\ a^3-b^3=(a-b)(a^2+ab+b^2) \\ a^n-b^n=(a-b) \displaystyle\sum_{i=1}^n a^{n-i}b^{i-1} a2b2=(a+b)(ab)a2±2ab+b2=(a±b)2a3+b3=(a+b)(a2ab+b2)a3b3=(ab)(a2+ab+b2)anbn=(ab)i=1nanibi1

一元二次方程

a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2+bx+c=0(a\neq0) ax2+bx+c=0(a=0)

求根公式
x 1 , 2 = − b ± Δ 2 a , Δ = b 2 − 4 a c x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}, \Delta=b^2-4ac x1,2=2ab±Δ ,Δ=b24ac

根与系数的关系
x 1 + x 2 = − b a x 1 x 2 = c a x_1+x_2=-\dfrac{b}{a}\\ x_1x_2=\dfrac{c}{a} x1+x2=abx1x2=ac

指数与对数

a n ⋅ a m = a n + m a^n\cdot a^m=a^{n+m} anam=an+m
a n / a m = a n − m a^n/a^m=a^{n-m} an/am=anm
( a n ) m = a m n (a^n)^m=a^{mn} (an)m=amn
( a b ) n = a n ⋅ b n (ab)^n=a^n\cdot b^n (ab)n=anbn
a − n = 1 a n a^{-n}=\dfrac{1}{a^n} an=an1

log ⁡ a 1 = 0 \log_a1=0 loga1=0
log ⁡ a x = ln ⁡ x ln ⁡ a \log_ax=\dfrac{\ln x}{\ln a} logax=lnalnx (换底公式)
log ⁡ a x y = log ⁡ a x + log ⁡ a y \log_axy=\log_ax+\log_ay logaxy=logax+logay
log ⁡ a x y = log ⁡ a x − log ⁡ a y \log_a\dfrac{x}{y}=\log_ax-\log_ay logayx=logaxlogay
log ⁡ a x y = y log ⁡ a x \log_ax^y=y\log_ax logaxy=ylogax

x = e ln ⁡ x x=e^{\ln x} x=elnx

三角恒等式(Trigonometric Identity)

平方关系
sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2\alpha+\cos^2\alpha=1 sin2α+cos2α=1

两角和差
cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β \cos (\alpha \pm \beta )=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\ \sin (\alpha \pm \beta )=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\ \tan (\alpha \pm \beta )=\dfrac{\tan \alpha \pm \tan \beta } {1\mp \tan \alpha \tan \beta} cos(α±β)=cosαcosβsinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=1tanαtanβtanα±tanβ

和差化积
sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 tan ⁡ α + tan ⁡ β = sin ⁡ ( α + β ) cos ⁡ α cos ⁡ β \sin \alpha +\sin \beta =2\sin \dfrac{\alpha +\beta}{2}\cos \dfrac{\alpha -\beta}{2} \\ \sin \alpha -\sin \beta =2\cos \dfrac{\alpha +\beta}{2}\sin \dfrac{\alpha -\beta}{2} \\ \cos \alpha +\cos \beta =2\cos \dfrac{\alpha +\beta}{2}\cos \dfrac{\alpha -\beta}{2} \\ \cos \alpha -\cos \beta =-2\sin \dfrac{\alpha +\beta}{2}\sin \dfrac{\alpha -\beta}{2} \\ \tan\alpha+\tan\beta=\dfrac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta} sinα+sinβ=2sin2α+βcos2αβsinαsinβ=2cos2α+βsin2αβcosα+cosβ=2cos2α+βcos2αβcosαcosβ=2sin2α+βsin2αβtanα+tanβ=cosαcosβsin(α+β)

积化和差
sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \sin \alpha \cos \beta =\dfrac{1}{2}[\sin (\alpha +\beta )+\sin (\alpha -\beta )] \\ \cos \alpha \sin \beta =\dfrac{1}{2}[\sin (\alpha +\beta )-\sin (\alpha -\beta )] \\ \cos \alpha \cos \beta =\dfrac{1}{2}[\cos (\alpha +\beta )+\cos (\alpha -\beta )] \\ \sin \alpha \sin \beta =-\dfrac{1}{2}[\cos (\alpha +\beta )-\cos (\alpha -\beta )] sinαcosβ=21[sin(α+β)+sin(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]cosαcosβ=21[cos(α+β)+cos(αβ)]sinαsinβ=21[cos(α+β)cos(αβ)]

倍角公式
sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α = 2 tan ⁡ α + cot ⁡ α cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α cot ⁡ 2 α = cot ⁡ 2 α − 1 2 cot ⁡ α sin ⁡ 3 α = 3 sin ⁡ α − 4 sin ⁡ 3 α cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α tan ⁡ 3 α = 3 tan ⁡ α − tan ⁡ 3 α 1 − 3 tan ⁡ 2 α cot ⁡ 3 α = cot ⁡ 3 α − 3 cot ⁡ α 3 cot ⁡ α − 1 \sin 2\alpha=2\sin \alpha \cos \alpha =\dfrac{2}{\tan \alpha +\cot \alpha} \\ \cos 2\alpha=\cos^2 \alpha-\sin^2 \alpha \\ \tan 2\alpha =\dfrac{2\tan \alpha}{1-\tan^2 \alpha} \\ \cot 2\alpha=\dfrac{\cot^2\alpha -1}{2\cot \alpha} \\ \sin 3\alpha=3\sin \alpha -4\sin^3 \alpha \\ \cos 3\alpha=4\cos^3 \alpha-3\cos \alpha \\ \tan 3\alpha=\dfrac{3\tan \alpha -\tan^3 \alpha}{1-3\tan^2 \alpha} \\ \cot 3\alpha=\dfrac{\cot^3 \alpha -3\cot \alpha}{3\cot \alpha -1} sin2α=2sinαcosα=tanα+cotα2cos2α=cos2αsin2αtan2α=1tan2α2tanαcot2α=2cotαcot2α1sin3α=3sinα4sin3αcos3α=4cos3α3cosαtan3α=13tan2α3tanαtan3αcot3α=3cotα1cot3α3cotα

半角公式 (正负由 α 2 \dfrac{\alpha}{2} 2α所在的象限决定)
sin ⁡ α 2 = ± 1 − cos ⁡ α 2 cos ⁡ α 2 = ± 1 + cos ⁡ α 2 tan ⁡ α 2 = ± 1 − cos ⁡ α 1 + cos ⁡ α = sin ⁡ α 1 + cos ⁡ α = 1 − cos ⁡ α sin ⁡ α cot ⁡ α 2 = ± 1 + cos ⁡ α 1 − cos ⁡ α = 1 + cos ⁡ α sin ⁡ α = sin ⁡ α 1 − cot ⁡ α \sin \dfrac{\alpha}{2}=\pm \sqrt{\dfrac{1-\cos \alpha }{2}} \\ \cos\dfrac{\alpha}{2}=\pm \sqrt{\dfrac{1+\cos \alpha }{2}} \\ \tan \dfrac{\alpha}{2}=\pm \sqrt {\dfrac{1-\cos \alpha }{1+\cos \alpha }}=\dfrac{\sin \alpha}{1+\cos \alpha}=\dfrac{1-\cos \alpha}{\sin \alpha} \\ \cot\dfrac{\alpha}{2}=\pm \sqrt {\dfrac{1+\cos \alpha}{1-\cos \alpha}}=\dfrac{1+\cos \alpha}{\sin \alpha} =\dfrac{\sin \alpha}{1-\cot \alpha} sin2α=±21cosα cos2α=±21+cosα tan2α=±1+cosα1cosα =1+cosαsinα=sinα1cosαcot2α=±1cosα1+cosα =sinα1+cosα=1cotαsinα

辅助角公式
a sin ⁡ α + b cos ⁡ α = a 2 + b 2 sin ⁡ ( α + arctan ⁡ b a ) a sin ⁡ α + b cos ⁡ α = a 2 + b 2 cos ⁡ ( α − arctan ⁡ a b ) a\sin \alpha +b\cos \alpha =\sqrt{a^2+b^2}\sin (\alpha +\arctan\frac{b}{a}) \\ a\sin \alpha +b\cos \alpha =\sqrt{a^2+b^2}\cos (\alpha -\arctan\frac{a}{b}) asinα+bcosα=a2+b2 sin(α+arctanab)asinα+bcosα=a2+b2 cos(αarctanba)

万能公式
sin ⁡ α = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \sin\alpha=\dfrac{2\tan\frac{\alpha}{2}}{1+\tan ^2\frac{\alpha}{2}} \\ \cos\alpha=\dfrac{1-\tan ^2\frac{\alpha}{2}}{1+\tan ^2\frac{\alpha}{2}} \\ \tan\alpha=\dfrac{2\tan\frac{\alpha}{2}}{1-\tan ^2\frac{\alpha}{2}} sinα=1+tan22α2tan2αcosα=1+tan22α1tan22αtanα=1tan22α2tan2α

降幂公式
sin ⁡ 2 α = 1 2 ( 1 − cos ⁡ 2 α ) cos ⁡ 2 α = 1 2 ( 1 + cos ⁡ 2 α ) tan ⁡ 2 α = 1 − cos ⁡ 2 α 1 + cos ⁡ 2 α \sin^2 \alpha=\frac{1}{2}(1-\cos 2\alpha) \\ \cos^2 \alpha=\frac{1}{2}(1+\cos 2\alpha)\\ \tan^2 \alpha=\dfrac{1-\cos 2\alpha}{1+\cos 2\alpha} sin2α=21(1cos2α)cos2α=21(1+cos2α)tan2α=1+cos2α1cos2α

正弦定理(R为外接圆半径)
a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 R \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R sinAa=sinBb=sinCc=2R

余弦定理
c 2 = a 2 + b 2 − 2 a b cos ⁡ C c^2=a^2+b^2-2ab\cos C c2=a2+b22abcosC

数列(Series)

等差数列
通项公式: a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n1)d
求和公式: S n = n ( a 1 + a n ) 2 S_n=\dfrac{n(a_1+a_n)}{2} Sn=2n(a1+an)

等比数列
通项公式: a n = a 1 q n − 1 ( a n ≠ 0 , q ≠ 0 ) a_n=a_1q^{n-1}(a_n\neq0,q\neq0) an=a1qn1(an=0,q=0)
求和公式: S n = { a 1 ( 1 − q n ) 1 − q if  q ≠ 1 n a 1 if  q = 1 S_n=\begin{cases} \dfrac{a_1(1-q^n)}{1-q} &\text{if } q\neq1 \\ na_1 &\text{if } q=1 \end{cases} Sn=1qa1(1qn)na1if q=1if q=1

排列和组合(Arrangement and Combination)

阶乘: n ! = 1 × 2 × ⋯ ( n − 2 ) ( n − 1 ) n n!=1\times2\times\cdots (n-2)(n-1)n n!=1×2×(n2)(n1)n
排列: A n m = n ! ( n − m ) ! A_n^m=\dfrac{n!}{(n-m)!} Anm=(nm)!n!
组合: ∁ n m = A n m m ! = n ! m ! ( n − m ) ! \complement_n^m=\dfrac{A_n^m}{m!}=\dfrac{n!}{m!(n-m)!} nm=m!Anm=m!(nm)!n!

  • 7
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值