本章目的:明确DFMEA实施的持续积累工作:建立故障模式库(失效模式库) 。
前言:
其实,这更算是公司或行业层面的东西。只有建立完善的故障模式库,并加以有效的运用。才能防止错误的再犯,在可靠性上有质的突破。
//在这里不得不提软件行业这方面的基础做的不错,如:
这是Java异常体系结构。软件行业不单将故障模式整理出体系结构,还给出了解决办法,并汇集成册,让人人都可以查询。这也是行业环境越来越好的原因之一。
回到机械行业,由于在机械设计中实施DFMEA要遇到较多困难,故作者建议,在具体实施DFMEA之前,需要做好建立较为完善的故障模式库并确定DFMEA的详细分析对象等准备工作。
建立故障模式库的方法
以发动机为例子,发动机的组成零部件多、结构复杂,大多数零部件在运行时还会有相互作用,导致零部件、子系统和系统的故障模式不仅复杂,各层次的故障模式还会相互重复,需要为发动机建立一个故障模式库;该模式库不仅应该包含发动机中所有子系统和零部件的故障模式,还能够反映出该故障模式究竟属于哪一个零部件或系统,其建模流程如图1所示。
1.1建立系统结构树
为建立故障模式库,首先要建立系统的结构树,它并不依赖于某一特定的产品,而是依据同一类产品建立。如建立一个汽油机的结构树时,应考虑该厂所有的汽油机,分析出其共同特点后建立结构树;对于组成结构有重大改变的产品,可以考虑为其改变的部分建立一个分支,挂接在系统结构树的相应节点上。
以汽油机的节流阀体为例, 该阀体大致都由阀体、 怠速控制阀、 节气门位置传感器等组成,细节部分会有所不同,节流阀体的系统结构树如图2所示。
//产品结构设计的都明白,其实就是bom表。
1.2确定故障数据源
为确定故障模式,先要找到相应的数据源;建议选择同类产品的试验数据或三包数据,因为这两种数据中较为详细地记录了产品在试验和使用过程中出现的故障。由于发动机可靠性试验的成本很高,一般企业中都不会有充分的试验数据;尽管三包数据记录的不是十分规范,但通过归纳和整理,仍然可以从中抽象出故障模式。所以,在试验数据不充足的情况下,一般推荐采用三包数据。
1.3筛选所分析子系统的故障数据
一般来讲,故障数据来自于系统,需要将故障数据逐层筛选,才能最终得到系统、 每一级子系统以及零部件的故障数据,为确定其故障模式作准备。
1.4确定关键字
三包数据来自于不同的维修点,并非由专业的试验人员收集,难免存在不规范的现象,比如对于密封不严!这一故障现象,故障数据中就会有 密封不严、 不密封、 密封性差、 密封性不好!等多种描述。针对这种现象,建议数据归纳人员先要了解各种故障现象的描述,在此基础上确定关键字,对所选子系统的故障数据进行归类。关键字确定的原则是,能筛选到95%以上的同种故障现象,尽量做到不遗
漏; 不同故障现象间尽量做到不重复。因此,筛选同一种故障现象很可能需要确定几个关键字。
1.5对系统的故障数据进行分类
依据确定的关键字对系统的故障数据进行分类,分类后的故障数据就可以用来抽象出故障模式。
1.6故障模式的抽象
根据分类后的故障数据,可以抽象出相应的故障模式。故障模式要求用术语表示,汽车产品可以参照标准QC-900;标准中没有的故障模式,需由工程师商量之后统一确定。
1.3筛选所分析子系统的故障数据
一般来讲,故障数据来自于系统,需要将故障数据逐层筛选,才能最终得到系统、 每一级子系统以及零部件的故障数据,为确定其故障模式作准备。1.4确定关键字
三包数据来自于不同的维修点,并非由专业的试验人员收集,难免存在不规范的现象,比如对于密封不严!这一故障现象,故障数据中就会有 密封不严、 不密封、 密封性差、 密封性不好!等多种描述。针对这种现象,建议数据归纳人员先要了解各种故障现象的描述,在此基础上确定关键字,对所选子系统的故障数据进行归类。关键字确定的原则是,能筛选到95%以上的同种故障现象,尽量做到不遗漏; 不同故障现象间尽量做到不重复。因此,筛选同一种故障现象很可能需要确定几个关键字。
1.5对系统的故障数据进行分类
依据确定的关键字对系统的故障数据进行分类,分类后的故障数据就可以用来抽象出故障模式。1.6故障模式的抽象
根据分类后的故障数据,可以抽象出相应的故障模式。故障模式要求用术语表示,汽车产品可以参照标准QC-900;标准中没有的故障模式,需由工程师商量之后统一确定。
QT-900中内容: