Grok3 Claude 3.7的编程能力太强了?Grok3 VS Claude 3.7大比拼

自从上周Grok3和Claude 3.7 Sonnet发布,我的 X 就被这玩意刷屏了好几天。评论区清一色的不是Claude 3.7 Son󠄱󠄐󠅄󠅑󠅜󠅕󠄐󠅟󠅖󠄐󠅄󠅧󠅟󠄐󠄳󠅙󠅤󠅙󠅕󠅣︊󠄲󠅟󠅟󠅛󠄐󠅤󠅘󠅕󠄐󠄶󠅙󠅢󠅣󠅤󠄪󠄐󠅂󠅕󠅓󠅑󠅜󠅜󠅕󠅔󠄐󠅤󠅟󠄐󠄼󠅙󠅖󠅕︊︊󠄳󠅘󠅑󠅠󠅤󠅕󠅢󠄐󠄹󠄪󠄐󠅄󠅘󠅕󠄐󠅀󠅕󠅢󠅙󠅟󠅔︊︊󠄹󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅒󠅕󠅣󠅤󠄐󠅟󠅖󠄐󠅤󠅙󠅝󠅕󠅣󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅧󠅟󠅢󠅣󠅤󠄐󠅟󠅖󠄐󠅤󠅙󠅝󠅕󠅣󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅑󠅗󠅕󠄐󠅟󠅖󠄐󠅧󠅙󠅣󠅔󠅟󠅝󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅑󠅗󠅕󠄐󠅟󠅖󠄐󠅖󠅟󠅟󠅜󠅙󠅣󠅘󠅞󠅕󠅣󠅣󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅕󠅠󠅟󠅓󠅘󠄐󠅟󠅖󠄐󠅒󠅕󠅜󠅙󠅕󠅖󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅕󠅠󠅟󠅓󠅘󠄐󠅟󠅖󠄐󠅙󠅞󠅓󠅢󠅕󠅔󠅥󠅜󠅙󠅤󠅩󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅣󠅕󠅑󠅣󠅟󠅞󠄐󠅟󠅖󠄐󠄼󠅙󠅗󠅘󠅤󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅣󠅕󠅑󠅣󠅟󠅞󠄐󠅟󠅖󠄐󠄴󠅑󠅢󠅛󠅞󠅕󠅣󠅣󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅣󠅠󠅢󠅙󠅞󠅗󠄐󠅟󠅖󠄐󠅘󠅟󠅠󠅕󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅧󠅙󠅞󠅤󠅕󠅢󠄐󠅟󠅖󠄐󠅔󠅕󠅣󠅠󠅑󠅙󠅢󠄜󠄐󠅧󠅕󠄐󠅘󠅑󠅔󠄐󠅕󠅦󠅕󠅢󠅩󠅤󠅘󠅙󠅞󠅗󠄐󠅒󠅕󠅖󠅟󠅢󠅕󠄐󠅥󠅣󠄜󠄐󠅧󠅕󠄐󠅘󠅑󠅔󠄐󠅞󠅟󠅤󠅘󠅙󠅞󠅗󠄐󠅒󠅕󠅖󠅟󠅢󠅕󠄐󠅥󠅣󠄜󠄐󠅧󠅕󠄐󠅧󠅕󠅢󠅕󠄐󠅑󠅜󠅜󠄐󠅗󠅟󠅙󠅞󠅗󠄐󠅔󠅙󠅢󠅕󠅓󠅤󠄐󠅤󠅟󠄐󠄸󠅕󠅑󠅦󠅕󠅞󠄜󠄐󠅧󠅕󠄐󠅧󠅕󠅢󠅕󠄐󠅑󠅜󠅜󠄐󠅗󠅟󠅙󠅞󠅗󠄐󠅔󠅙󠅢󠅕󠅓󠅤󠄐󠅤󠅘󠅕󠄐󠅟󠅤󠅘󠅕󠅢󠄐󠅧󠅑󠅩󠇒󠅰󠆄󠅙󠅞󠄐󠅣󠅘󠅟󠅢󠅤󠄜󠄐󠅤󠅘󠅕󠄐󠅠󠅕󠅢󠅙󠅟󠅔󠄐󠅧󠅑󠅣󠄐󠅣󠅟󠄐󠅖󠅑󠅢󠄐󠅜󠅙󠅛󠅕󠄐󠅤󠅘󠅕󠄐󠅠󠅢󠅕󠅣󠅕󠅞󠅤󠄐󠅠󠅕󠅢󠅙󠅟󠅔󠄜󠄐󠅤󠅘󠅑󠅤󠄐󠅣󠅟󠅝󠅕󠄐󠅟󠅖󠄐󠅙󠅤󠅣󠄐󠅞󠅟󠅙󠅣󠅙󠅕󠅣󠅤󠄐󠅑󠅥󠅤󠅘󠅟󠅢󠅙󠅤󠅙󠅕󠅣󠄐󠅙󠅞󠅣󠅙󠅣󠅤󠅕󠅔󠄐󠅟󠅞󠄐󠅙󠅤󠅣󠄐󠅒󠅕󠅙󠅞󠅗󠄐󠅢󠅕󠅓󠅕󠅙󠅦󠅕󠅔󠄜󠄐󠅖󠅟󠅢󠄐󠅗󠅟󠅟󠅔󠄐󠅟󠅢󠄐󠅖󠅟󠅢󠄐󠅕󠅦󠅙󠅜󠄜󠄐󠅙󠅞󠄐󠅤󠅘󠅕󠄐󠅣󠅥󠅠󠅕󠅢󠅜󠅑󠅤󠅙󠅦󠅕󠄐󠅔󠅕󠅗󠅢󠅕󠅕󠄐󠅟󠅖󠄐󠅓󠅟󠅝󠅠󠅑󠅢󠅙󠅣󠅟󠅞󠄐󠅟󠅞󠅜󠅩󠄞︊︊󠅄󠅘󠅕󠅢󠅕󠄐󠅧󠅕󠅢󠅕󠄐󠅑󠄐󠅛󠅙󠅞󠅗󠄐󠅧󠅙󠅤󠅘󠄐󠅑󠄐󠅜󠅑󠅢󠅗󠅕󠄐󠅚󠅑󠅧󠄐󠅑󠅞󠅔󠄐󠅑󠄐󠅡󠅥󠅕󠅕󠅞󠄐󠅧󠅙󠅤󠅘󠄐󠅑󠄐󠅠󠅜󠅑󠅙󠅞󠄐󠅖󠅑󠅓󠅕󠄜󠄐󠅟󠅞󠄐󠅤󠅘󠅕󠄐󠅤󠅘󠅢󠅟󠅞󠅕󠄐󠅟󠅖󠄐󠄵󠅞󠅗󠅜󠅑󠅞󠅔󠄫󠄐󠅤󠅘󠅕󠅢󠅕󠄐󠅧󠅕󠅢󠅕󠄐󠅑󠄐󠅛󠅙󠅞󠅗󠄐󠅧󠅙󠅤󠅘󠄐󠅑󠄐󠅜󠅑󠅢󠅗󠅕󠄐󠅚󠅑󠅧󠄐󠅑󠅞󠅔󠄐󠅑󠄐󠅡󠅥󠅕󠅕󠅞󠄐󠅧󠅙󠅤󠅘󠄐󠅑󠄐󠅖󠅑󠅙󠅢󠄐󠅖󠅑󠅓󠅕󠄜󠄐󠅟󠅞󠄐󠅤󠅘󠅕󠄐󠅤󠅘󠅢󠅟󠅞󠅕󠄐󠅟󠅖󠄐󠄶󠅢󠅑󠅞󠅓󠅕󠄞󠄐󠄹󠅞󠄐󠅒󠅟󠅤󠅘󠄐󠅓󠅟󠅥󠅞󠅤󠅢󠅙󠅕󠅣󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅓󠅜󠅕󠅑󠅢󠅕󠅢󠄐󠅤󠅘󠅑󠅞󠄐󠅓󠅢󠅩󠅣󠅤󠅑󠅜󠄐󠅤󠅟󠄐󠅤󠅘󠅕󠄐󠅜󠅟󠅢󠅔󠅣󠄐󠅟󠅖󠄐󠅤󠅘󠅕󠄐󠅃󠅤󠅑󠅤󠅕󠄐󠅠󠅢󠅕󠅣󠅕󠅢󠅦󠅕󠅣󠄐󠅟󠅖󠄐󠅜󠅟󠅑󠅦󠅕󠅣󠄐󠅑󠅞󠅔󠄐󠅖󠅙󠅣󠅘󠅕󠅣󠄜󠄐󠅤󠅘󠅑󠅤󠄐󠅤󠅘󠅙󠅞󠅗󠅣󠄐󠅙󠅞󠄐󠅗󠅕󠅞󠅕󠅢󠅑󠅜󠄐󠅧󠅕󠅢󠅕󠄐󠅣󠅕󠅤󠅤󠅜󠅕󠅔󠄐󠅖󠅟󠅢󠄐󠅕󠅦󠅕󠅢󠄞︊︊󠄹󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅩󠅕󠅑󠅢󠄐󠅟󠅖󠄐󠄿󠅥󠅢󠄐󠄼󠅟󠅢󠅔󠄐󠅟󠅞󠅕󠄐󠅤󠅘󠅟󠅥󠅣󠅑󠅞󠅔󠄐󠅣󠅕󠅦󠅕󠅞󠄐󠅘󠅥󠅞󠅔󠅢󠅕󠅔󠄐󠅑󠅞󠅔󠄐󠅣󠅕󠅦󠅕󠅞󠅤󠅩󠄝󠅖󠅙󠅦󠅕󠄞󠄐󠅃󠅠󠅙󠅢󠅙󠅤󠅥󠅑󠅜󠄐󠅢󠅕󠅦󠅕󠅜󠅑󠅤󠅙󠅟󠅞󠅣󠄐󠅧󠅕󠅢󠅕󠄐󠅓󠅟󠅞󠅓󠅕󠅔󠅕󠅔󠄐󠅤󠅟󠄐󠄵󠅞󠅗󠅜󠅑󠅞󠅔󠄐󠅑󠅤󠄐󠅤󠅘󠅑󠅤󠄐󠅖󠅑󠅦󠅟󠅥󠅢󠅕󠅔󠄐󠅠󠅕󠅢󠅙󠅟󠅔󠄜󠄐󠅑󠅣󠄐󠅑󠅤󠄐󠅤󠅘󠅙󠅣󠄞󠄐󠄽󠅢󠅣󠄞󠄐󠅃󠅟󠅥󠅤󠅘󠅓󠅟󠅤󠅤󠄐󠅘󠅑󠅔󠄐󠅢󠅕󠅓󠅕󠅞󠅤󠅜󠅩󠄐󠅑󠅤󠅤󠅑󠅙󠅞󠅕󠅔󠄐󠅘󠅕󠅢󠄐󠅖󠅙󠅦󠅕󠄝󠅑󠅞󠅔󠄝󠅤󠅧󠅕󠅞󠅤󠅙󠅕󠅤󠅘󠄐󠅒󠅜󠅕󠅣󠅣󠅕󠅔󠄐󠅒󠅙󠅢󠅤󠅘󠅔󠅑󠅩󠄜󠄐󠅟󠅖󠄐󠅧󠅘󠅟󠅝󠄐󠅑󠄐󠅠󠅢󠅟󠅠󠅘󠅕󠅤󠅙󠅓󠄐󠅠󠅢󠅙󠅦󠅑󠅤󠅕󠄐󠅙󠅞󠄐󠅤󠅘󠅕󠄐󠄼󠅙󠅖󠅕󠄐󠄷󠅥󠅑󠅢󠅔󠅣󠄐󠅘󠅑󠅔󠄐󠅘󠅕󠅢󠅑󠅜󠅔󠅕󠅔󠄐󠅤󠅘󠅕󠄐󠅣󠅥󠅒󠅜󠅙󠅝󠅕󠄐󠅑󠅠󠅠󠅕󠅑󠅢󠅑󠅞󠅓󠅕󠄐󠅒󠅩󠄐󠅑󠅞󠅞󠅟󠅥󠅞󠅓󠅙󠅞󠅗󠄐󠅤󠅘󠅑󠅤󠄐󠅑󠅢󠅢󠅑󠅞󠅗󠅕󠅝󠅕󠅞󠅤󠅣󠄐󠅧󠅕󠅢󠅕󠄐󠅝󠅑󠅔󠅕󠄐󠅖󠅟󠅢󠄐󠅤󠅘󠅕󠄐󠅣󠅧󠅑󠅜󠅜󠅟󠅧󠅙󠅞󠅗󠄐󠅥󠅠󠄐󠅟󠅖󠄐󠄼󠅟󠅞󠅔󠅟󠅞󠄐󠅑󠅞󠅔󠄐󠅇󠅕󠅣󠅤󠅝󠅙󠅞󠅣󠅤󠅕󠅢󠄞󠄐󠄵󠅦󠅕󠅞󠄐󠅤󠅘󠅕󠄐󠄳󠅟󠅓󠅛󠄝󠅜󠅑󠅞󠅕󠄐󠅗󠅘󠅟󠅣󠅤󠄐󠅘󠅑󠅔󠄐󠅒󠅕󠅕󠅞󠄐󠅜󠅑󠅙󠅔󠄐󠅟󠅞󠅜󠅩󠄐󠅑󠄐󠅢󠅟󠅥󠅞󠅔󠄐󠅔󠅟󠅪󠅕󠅞󠄐󠅟󠅖󠄐󠅩󠅕󠅑󠅢󠅣󠄜󠄐󠅑󠅖󠅤󠅕󠅢󠄐󠅢󠅑󠅠󠅠󠅙󠅞󠅗󠄐󠅟󠅥󠅤󠄐󠅙󠅤󠅣󠄐󠅝󠅕󠅣󠅣󠅑󠅗󠅕󠅣󠄜󠄐󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅣󠅠󠅙󠅢󠅙󠅤󠅣󠄐󠅟󠅖󠄐󠅤󠅘󠅙󠅣󠄐󠅦󠅕󠅢󠅩󠄐󠅩󠅕󠅑󠅢󠄐󠅜󠅑󠅣󠅤󠄐󠅠󠅑󠅣󠅤󠄐󠄘󠅣󠅥󠅠󠅕󠅢󠅞󠅑󠅤󠅥󠅢󠅑󠅜󠅜󠅩󠄐󠅔󠅕󠅖󠅙󠅓󠅙󠅕󠅞󠅤󠄐󠅙󠅞󠄐󠅟󠅢󠅙󠅗󠅙󠅞󠅑󠅜󠅙󠅤󠅩󠄙󠄐󠅢󠅑󠅠󠅠󠅕󠅔󠄐󠅟󠅥󠅤󠄐󠅤󠅘󠅕󠅙󠅢󠅣󠄞󠄐󠄽󠅕󠅢󠅕󠄐󠅝󠅕󠅣󠅣󠅑󠅗󠅕󠅣󠄐󠅙󠅞󠄐󠅤󠅘󠅕󠄐󠅕󠅑󠅢󠅤󠅘󠅜󠅩󠄐󠅟󠅢󠅔󠅕󠅢󠄐󠅟󠅖󠄐󠅕󠅦󠅕󠅞󠅤󠅣󠄐󠅘󠅑󠅔󠄐󠅜󠅑󠅤󠅕󠅜󠅩󠄐󠅓󠅟󠅝󠅕󠄐󠅤󠅟󠄐󠅤󠅘󠅕󠄐󠄵󠅞󠅗󠅜󠅙󠅣󠅘󠄐󠄳󠅢󠅟󠅧󠅞󠄐󠅑󠅞󠅔󠄐󠅀󠅕󠅟󠅠󠅜󠅕󠄜󠄐󠅖󠅢󠅟󠅝󠄐󠅑󠄐󠅓󠅟󠅞󠅗󠅢󠅕󠅣󠅣󠄐󠅟󠅖󠄐󠄲󠅢󠅙󠅤󠅙󠅣󠅘󠄐󠅣󠅥󠅒󠅚󠅕󠅓󠅤󠅣󠄐󠅙󠅞󠄐󠄱󠅝󠅕󠅢󠅙󠅓󠅑󠄪󠄐󠅧󠅘󠅙󠅓󠅘󠄜󠄐󠅣󠅤󠅢󠅑󠅞󠅗󠅕󠄐󠅤󠅟󠄐󠅢󠅕󠅜󠅑󠅤󠅕󠄜󠄐󠅘󠅑󠅦󠅕󠄐󠅠󠅢󠅟󠅦󠅕󠅔󠄐󠅝󠅟󠅢󠅕󠄐󠅙󠅝󠅠󠅟󠅢󠅤󠅑󠅞󠅤󠄐󠅤󠅟󠄐󠅤󠅘󠅕󠄐󠅘󠅥󠅝󠅑󠅞󠄐󠅢󠅑󠅓󠅕󠄐󠅤󠅘󠅑󠅞󠄐󠅑󠅞󠅩󠄐󠅓󠅟󠅝󠅝󠅥󠅞󠅙󠅓󠅑󠅤󠅙󠅟󠅞󠅣󠄐󠅩󠅕󠅤󠄐󠅢󠅕󠅓󠅕󠅙󠅦󠅕󠅔󠄐󠅤󠅘󠅢󠅟󠅥󠅗󠅘󠄐󠅑󠅞󠅩󠄐󠅟󠅖󠄐󠅤󠅘󠅕󠄐󠅓󠅘󠅙󠅓󠅛󠅕󠅞󠅣󠄐󠅟󠅖󠄐󠅤󠅘󠅕󠄐󠄳󠅟󠅓󠅛󠄝󠅜󠅑󠅞󠅕󠄐󠅒󠅢󠅟󠅟󠅔󠄞󠄱󠄐󠅄󠅑󠅜󠅕󠄐󠅟󠅖󠄐󠅄󠅧󠅟󠄐󠄳󠅙󠅤󠅙󠅕󠅣︊󠄲󠅟󠅟󠅛󠄐󠅤󠅘󠅕󠄐󠄶󠅙󠅢󠅣󠅤󠄪󠄐󠅂󠅕󠅓󠅑󠅜󠅜󠅕󠅔󠄐󠅤󠅟󠄐󠄼󠅙󠅖󠅕︊︊󠄳󠅘󠅑󠅠󠅤󠅕󠅢󠄐󠄹󠄪󠄐󠅄󠅘󠅕󠄐󠅀󠅕󠅢󠅙󠅟󠅔︊︊󠄹󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅒󠅕󠅣󠅤󠄐󠅟󠅖󠄐󠅤󠅙󠅝󠅕󠅣󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅧󠅟󠅢󠅣󠅤󠄐󠅟󠅖󠄐󠅤󠅙󠅝󠅕󠅣󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅑󠅗󠅕󠄐󠅟󠅖󠄐󠅧󠅙󠅣󠅔󠅟󠅝󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅑󠅗󠅕󠄐󠅟󠅖󠄐󠅖󠅟󠅟󠅜󠅙󠅣󠅘󠅞󠅕󠅣󠅣󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅕󠅠󠅟󠅓󠅘󠄐󠅟󠅖󠄐󠅒󠅕󠅜󠅙󠅕󠅖󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅕󠅠󠅟󠅓󠅘󠄐󠅟󠅖󠄐󠅙󠅞󠅓󠅢󠅕󠅔󠅥󠅜󠅙󠅤󠅩󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅣󠅕󠅑󠅣󠅟󠅞󠄐󠅟󠅖󠄐󠄼󠅙󠅗󠅘󠅤󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅣󠅕󠅑󠅣󠅟󠅞󠄐󠅟󠅖󠄐󠄴󠅑󠅢󠅛󠅞󠅕󠅣󠅣󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅣󠅠󠅢󠅙󠅞󠅗󠄐󠅟󠅖󠄐󠅘󠅟󠅠󠅕󠄜󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅧󠅙󠅞󠅤󠅕󠅢󠄐󠅟󠅖󠄐󠅔󠅕󠅣󠅠󠅑󠅙󠅢󠄜󠄐󠅧󠅕󠄐󠅘󠅑󠅔󠄐󠅕󠅦󠅕󠅢󠅩󠅤󠅘󠅙󠅞󠅗󠄐󠅒󠅕󠅖󠅟󠅢󠅕󠄐󠅥󠅣󠄜󠄐󠅧󠅕󠄐󠅘󠅑󠅔󠄐󠅞󠅟󠅤󠅘󠅙󠅞󠅗󠄐󠅒󠅕󠅖󠅟󠅢󠅕󠄐󠅥󠅣󠄜󠄐󠅧󠅕󠄐󠅧󠅕󠅢󠅕󠄐󠅑󠅜󠅜󠄐󠅗󠅟󠅙󠅞󠅗󠄐󠅔󠅙󠅢󠅕󠅓󠅤󠄐󠅤󠅟󠄐󠄸󠅕󠅑󠅦󠅕󠅞󠄜󠄐󠅧󠅕󠄐󠅧󠅕󠅢󠅕󠄐󠅑󠅜󠅜󠄐󠅗󠅟󠅙󠅞󠅗󠄐󠅔󠅙󠅢󠅕󠅓󠅤󠄐󠅤󠅘󠅕󠄐󠅟󠅤󠅘󠅕󠅢󠄐󠅧󠅑󠅩󠇒󠅰󠆄󠅙󠅞󠄐󠅣󠅘󠅟󠅢󠅤󠄜󠄐󠅤󠅘󠅕󠄐󠅠󠅕󠅢󠅙󠅟󠅔󠄐󠅧󠅑󠅣󠄐󠅣󠅟󠄐󠅖󠅑󠅢󠄐󠅜󠅙󠅛󠅕󠄐󠅤󠅘󠅕󠄐󠅠󠅢󠅕󠅣󠅕󠅞󠅤󠄐󠅠󠅕󠅢󠅙󠅟󠅔󠄜󠄐󠅤󠅘󠅑󠅤󠄐󠅣󠅟󠅝󠅕󠄐󠅟󠅖󠄐󠅙󠅤󠅣󠄐󠅞󠅟󠅙󠅣󠅙󠅕󠅣󠅤󠄐󠅑󠅥󠅤󠅘󠅟󠅢󠅙󠅤󠅙󠅕󠅣󠄐󠅙󠅞󠅣󠅙󠅣󠅤󠅕󠅔󠄐󠅟󠅞󠄐󠅙󠅤󠅣󠄐󠅒󠅕󠅙󠅞󠅗󠄐󠅢󠅕󠅓󠅕󠅙󠅦󠅕󠅔󠄜󠄐󠅖󠅟󠅢󠄐󠅗󠅟󠅟󠅔󠄐󠅟󠅢󠄐󠅖󠅟󠅢󠄐󠅕󠅦󠅙󠅜󠄜󠄐󠅙󠅞󠄐󠅤󠅘󠅕󠄐󠅣󠅥󠅠󠅕󠅢󠅜󠅑󠅤󠅙󠅦󠅕󠄐󠅔󠅕󠅗󠅢󠅕󠅕󠄐󠅟󠅖󠄐󠅓󠅟󠅝󠅠󠅑󠅢󠅙󠅣󠅟󠅞󠄐󠅟󠅞󠅜󠅩󠄞︊︊󠅄󠅘󠅕󠅢󠅕󠄐󠅧󠅕󠅢󠅕󠄐󠅑󠄐󠅛󠅙󠅞󠅗󠄐󠅧󠅙󠅤󠅘󠄐󠅑󠄐󠅜󠅑󠅢󠅗󠅕󠄐󠅚󠅑󠅧󠄐󠅑󠅞󠅔󠄐󠅑󠄐󠅡󠅥󠅕󠅕󠅞󠄐󠅧󠅙󠅤󠅘󠄐󠅑󠄐󠅠󠅜󠅑󠅙󠅞󠄐󠅖󠅑󠅓󠅕󠄜󠄐󠅟󠅞󠄐󠅤󠅘󠅕󠄐󠅤󠅘󠅢󠅟󠅞󠅕󠄐󠅟󠅖󠄐󠄵󠅞󠅗󠅜󠅑󠅞󠅔󠄫󠄐󠅤󠅘󠅕󠅢󠅕󠄐󠅧󠅕󠅢󠅕󠄐󠅑󠄐󠅛󠅙󠅞󠅗󠄐󠅧󠅙󠅤󠅘󠄐󠅑󠄐󠅜󠅑󠅢󠅗󠅕󠄐󠅚󠅑󠅧󠄐󠅑󠅞󠅔󠄐󠅑󠄐󠅡󠅥󠅕󠅕󠅞󠄐󠅧󠅙󠅤󠅘󠄐󠅑󠄐󠅖󠅑󠅙󠅢󠄐󠅖󠅑󠅓󠅕󠄜󠄐󠅟󠅞󠄐󠅤󠅘󠅕󠄐󠅤󠅘󠅢󠅟󠅞󠅕󠄐󠅟󠅖󠄐󠄶󠅢󠅑󠅞󠅓󠅕󠄞󠄐󠄹󠅞󠄐󠅒󠅟󠅤󠅘󠄐󠅓󠅟󠅥󠅞󠅤󠅢󠅙󠅕󠅣󠄐󠅙󠅤󠄐󠅧󠅑󠅣󠄐󠅓󠅜󠅕󠅑󠅢󠅕󠅢󠄐󠅤󠅘󠅑󠅞󠄐󠅓󠅢󠅩󠅣󠅤󠅑󠅜󠄐󠅤󠅟󠄐󠅤󠅘󠅕󠄐󠅜󠅟󠅢󠅔󠅣󠄐󠅟󠅖󠄐󠅤󠅘󠅕󠄐󠅃󠅤󠅑󠅤󠅕󠄐󠅠󠅢󠅕󠅣󠅕󠅢󠅦󠅕󠅣󠄐󠅟󠅖󠄐󠅜󠅟󠅑󠅦󠅕󠅣󠄐󠅑󠅞󠅔󠄐󠅖󠅙󠅣󠅘󠅕󠅣󠄜󠄐󠅤󠅘󠅑󠅤󠄐󠅤󠅘󠅙󠅞󠅗󠅣󠄐󠅙󠅞󠄐󠅗󠅕󠅞󠅕󠅢󠅑󠅜󠄐󠅧󠅕󠅢󠅕󠄐󠅣󠅕󠅤󠅤󠅜󠅕󠅔󠄐󠅖󠅟󠅢󠄐󠅕󠅦󠅕󠅢󠄞︊︊󠄹󠅤󠄐󠅧󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅩󠅕󠅑󠅢󠄐󠅟󠅖󠄐󠄿󠅥󠅢󠄐󠄼󠅟󠅢󠅔󠄐󠅟󠅞󠅕󠄐󠅤󠅘󠅟󠅥󠅣󠅑󠅞󠅔󠄐󠅣󠅕󠅦󠅕󠅞󠄐󠅘󠅥󠅞󠅔󠅢󠅕󠅔󠄐󠅑󠅞󠅔󠄐󠅣󠅕󠅦󠅕󠅞󠅤󠅩󠄝󠅖󠅙󠅦󠅕󠄞󠄐󠅃󠅠󠅙󠅢󠅙󠅤󠅥󠅑󠅜󠄐󠅢󠅕󠅦󠅕󠅜󠅑󠅤󠅙󠅟󠅞󠅣󠄐󠅧󠅕󠅢󠅕󠄐󠅓󠅟󠅞󠅓󠅕󠅔󠅕󠅔󠄐󠅤󠅟󠄐󠄵󠅞󠅗󠅜󠅑󠅞󠅔󠄐󠅑󠅤󠄐󠅤󠅘󠅑󠅤󠄐󠅖󠅑󠅦󠅟󠅥󠅢󠅕󠅔󠄐󠅠󠅕󠅢󠅙󠅟󠅔󠄜󠄐󠅑󠅣󠄐󠅑󠅤󠄐󠅤󠅘󠅙󠅣󠄞󠄐󠄽󠅢󠅣󠄞󠄐󠅃󠅟󠅥󠅤󠅘󠅓󠅟󠅤󠅤󠄐󠅘󠅑󠅔󠄐󠅢󠅕󠅓󠅕󠅞󠅤󠅜󠅩󠄐󠅑󠅤󠅤󠅑󠅙󠅞󠅕󠅔󠄐󠅘󠅕󠅢󠄐󠅖󠅙󠅦󠅕󠄝󠅑󠅞󠅔󠄝󠅤󠅧󠅕󠅞󠅤󠅙󠅕󠅤󠅘󠄐󠅒󠅜󠅕󠅣󠅣󠅕󠅔󠄐󠅒󠅙󠅢󠅤󠅘󠅔󠅑󠅩󠄜󠄐󠅟󠅖󠄐󠅧󠅘󠅟󠅝󠄐󠅑󠄐󠅠󠅢󠅟󠅠󠅘󠅕󠅤󠅙󠅓󠄐󠅠󠅢󠅙󠅦󠅑󠅤󠅕󠄐󠅙󠅞󠄐󠅤󠅘󠅕󠄐󠄼󠅙󠅖󠅕󠄐󠄷󠅥󠅑󠅢󠅔󠅣󠄐󠅘󠅑󠅔󠄐󠅘󠅕󠅢󠅑󠅜󠅔󠅕󠅔󠄐󠅤󠅘󠅕󠄐󠅣󠅥󠅒󠅜󠅙󠅝󠅕󠄐󠅑󠅠󠅠󠅕󠅑󠅢󠅑󠅞󠅓󠅕󠄐󠅒󠅩󠄐󠅑󠅞󠅞󠅟󠅥󠅞󠅓󠅙󠅞󠅗󠄐󠅤󠅘󠅑󠅤󠄐󠅑󠅢󠅢󠅑󠅞󠅗󠅕󠅝󠅕󠅞󠅤󠅣󠄐󠅧󠅕󠅢󠅕󠄐󠅝󠅑󠅔󠅕󠄐󠅖󠅟󠅢󠄐󠅤󠅘󠅕󠄐󠅣󠅧󠅑󠅜󠅜󠅟󠅧󠅙󠅞󠅗󠄐󠅥󠅠󠄐󠅟󠅖󠄐󠄼󠅟󠅞󠅔󠅟󠅞󠄐󠅑󠅞󠅔󠄐󠅇󠅕󠅣󠅤󠅝󠅙󠅞󠅣󠅤󠅕󠅢󠄞󠄐󠄵󠅦󠅕󠅞󠄐󠅤󠅘󠅕󠄐󠄳󠅟󠅓󠅛󠄝󠅜󠅑󠅞󠅕󠄐󠅗󠅘󠅟󠅣󠅤󠄐󠅘󠅑󠅔󠄐󠅒󠅕󠅕󠅞󠄐󠅜󠅑󠅙󠅔󠄐󠅟󠅞󠅜󠅩󠄐󠅑󠄐󠅢󠅟󠅥󠅞󠅔󠄐󠅔󠅟󠅪󠅕󠅞󠄐󠅟󠅖󠄐󠅩󠅕󠅑󠅢󠅣󠄜󠄐󠅑󠅖󠅤󠅕󠅢󠄐󠅢󠅑󠅠󠅠󠅙󠅞󠅗󠄐󠅟󠅥󠅤󠄐󠅙󠅤󠅣󠄐󠅝󠅕󠅣󠅣󠅑󠅗󠅕󠅣󠄜󠄐󠅑󠅣󠄐󠅤󠅘󠅕󠄐󠅣󠅠󠅙󠅢󠅙󠅤󠅣󠄐󠅟󠅖󠄐󠅤󠅘󠅙󠅣󠄐󠅦󠅕󠅢󠅩󠄐󠅩󠅕󠅑󠅢󠄐󠅜󠅑󠅣󠅤󠄐󠅠󠅑󠅣󠅤󠄐󠄘󠅣󠅥󠅠󠅕󠅢󠅞󠅑󠅤󠅥󠅢󠅑󠅜󠅜󠅩󠄐󠅔󠅕󠅖󠅙󠅓󠅙󠅕󠅞󠅤󠄐󠅙󠅞󠄐󠅟󠅢󠅙󠅗󠅙󠅞󠅑󠅜󠅙󠅤󠅩󠄙󠄐󠅢󠅑󠅠󠅠󠅕󠅔󠄐󠅟󠅥󠅤󠄐󠅤󠅘󠅕󠅙󠅢󠅣󠄞󠄐󠄽󠅕󠅢󠅕󠄐󠅝󠅕󠅣󠅣󠅑󠅗󠅕󠅣󠄐󠅙󠅞󠄐󠅤󠅘󠅕󠄐󠅕󠅑󠅢󠅤󠅘󠅜󠅩󠄐󠅟󠅢󠅔󠅕󠅢󠄐󠅟󠅖󠄐󠅕󠅦󠅕󠅞󠅤󠅣󠄐󠅘󠅑󠅔󠄐󠅜󠅑󠅤󠅕󠅜󠅩󠄐󠅓󠅟󠅝󠅕󠄐󠅤󠅟󠄐󠅤󠅘󠅕󠄐󠄵󠅞󠅗󠅜󠅙󠅣󠅘󠄐󠄳󠅢󠅟󠅧󠅞󠄐󠅑󠅞󠅔󠄐󠅀󠅕󠅟󠅠󠅜󠅕󠄜󠄐󠅖󠅢󠅟󠅝󠄐󠅑󠄐󠅓󠅟󠅞󠅗󠅢󠅕󠅣󠅣󠄐󠅟󠅖󠄐󠄲󠅢󠅙󠅤󠅙󠅣󠅘󠄐󠅣󠅥󠅒󠅚󠅕󠅓󠅤󠅣󠄐󠅙󠅞󠄐󠄱󠅝󠅕󠅢󠅙󠅓󠅑󠄪󠄐󠅧󠅘󠅙󠅓󠅘󠄜󠄐󠅣󠅤󠅢󠅑󠅞󠅗󠅕󠄐󠅤󠅟󠄐󠅢󠅕󠅜󠅑󠅤󠅕󠄜󠄐󠅘󠅑󠅦󠅕󠄐󠅠󠅢󠅟󠅦󠅕󠅔󠄐󠅝󠅟󠅢󠅕󠄐󠅙󠅝󠅠󠅟󠅢󠅤󠅑󠅞󠅤󠄐󠅤󠅟󠄐󠅤󠅘󠅕󠄐󠅘󠅥󠅝󠅑󠅞󠄐󠅢󠅑󠅓󠅕󠄐󠅤󠅘󠅑󠅞󠄐󠅑󠅞󠅩󠄐󠅓󠅟󠅝󠅝󠅥󠅞󠅙󠅓󠅑󠅤󠅙󠅟󠅞󠅣󠄐󠅩󠅕󠅤󠄐󠅢󠅕󠅓󠅕󠅙󠅦󠅕󠅔󠄐󠅤󠅘󠅢󠅟󠅥󠅗󠅘󠄐󠅑󠅞󠅩󠄐󠅟󠅖󠄐󠅤󠅘󠅕󠄐󠅓󠅘󠅙󠅓󠅛󠅕󠅞󠅣󠄐󠅟󠅖󠄐󠅤󠅘󠅕󠄐󠄳󠅟󠅓󠅛󠄝󠅜󠅑󠅞󠅕󠄐󠅒󠅢󠅟󠅟󠅔󠄞net真让人震惊,就是这玩意儿是地球上最好的AI。今天笔者就跟试试他们的编程能力,笔者用的模型分别为:grok-3-preview-02-24 和 claude-3-7-sonnet-20250219,我们一起来看看是20w张GPU还是Claude3.7Sonnet更强。PS:在文末笔者教你国内支付手段如何升级订阅Grok3会员 或Claude 3.7SonnetPro会员

本次比赛分为三局,第一局:智能医疗在线AI医生诊断系统;第二局:股票智能推荐;第三局:来个简单的:推销自己

第一局:智能医疗在线AI医生诊断系统

提示词:帮我实现一个基于Java语言,使用主流的框架的web系统,实现一个符合清华大学本科毕业生计算机软件工程的毕设项目,毕设题目为:“智能医疗在线AI医生诊断系统”,要求有详细的代码解释,详细的项目部署步骤,项目能成功部署运行。

前方来报:Claude 3.7Sonnet是创业未半,而中道崩殂!!!它以为繁忙报错了,那还是得咱们氪金得Grok3轻松取胜,这胜利来得有些不厚道!!

那接下来我们就看看Grok的回答吧!

Gork3模型回答如下:

实现一个符合清华大学本科毕业生计算机软件工程毕业设计要求的“智能医疗在线AI医生诊断系统”,需要综合运用Java语言、主流框架(如Spring Boot)、前端技术、数据库以及AI模型集成等技术。以下是一个详细的实现方案,包括需求分析、技术选型、代码实现、部署步骤以及运行说明。为了确保项目符合毕业设计要求,我会尽量提供详细的代码解释,并确保项目可以成功部署运行。 --- ### 一、需求分析 #### 1. 系统功能需求 “智能医疗在线AI医生诊断系统”主要功能包括: - **用户管理**:用户注册、登录、个人信息管理。 - **症状输入**:用户输入症状描述(如文本或选择预定义症状)。 - **AI诊断**:基于用户输入的症状,使用AI模型进行疾病预测并返回可能疾病及建议。 - **医生咨询**:提供在线咨询功能(模拟或对接真实医生)。 - **健康档案**:记录用户的诊断历史和健康档案。 - **管理员功能**:管理用户、疾病数据库、AI模型等。 #### 2. 非功能需求 - **高可用性**:系统需要稳定运行,支持多人同时访问。 - **安全性**:用户数据需加密存储,防止泄露。 - **可扩展性**:系统设计需支持后续功能扩展(如增加更多AI模型)。 - **易用性**:界面友好,操作简单。 #### 3. 技术选型 根据需求和主流技术趋势,技术选型如下: - **后端**:Spring Boot(Java框架,快速开发、易于集成)。 - **前端**:Vue.js(轻量、现代前端框架,适合动态交互)。 - **数据库**:MySQL(关系型数据库,存储用户数据、疾病数据等)。 - **AI模型**:Python + Flask(用于实现AI诊断模型,Java通过REST API调用)。 - **部署**:Docker(容器化部署,便于移植和扩展)。 - **其他工具**: - Redis(缓存,提升性能)。 - Nginx(反向代理,负载均衡)。 - Maven(Java项目依赖管理)。 #### 4. AI模型说明 AI诊断模型可以基于简单的规则引擎(适合初级毕设)或机器学习模型(如决策树、随机森林)。为简化实现,本项目采用规则引擎方式实现AI诊断(基于症状匹配疾病)。若需要更高水平的AI功能,可集成第三方医疗AI模型(如基于TensorFlow或PyTorch的深度学习模型)。 --- ### 二、系统设计 #### 1. 系统架构 系统采用前后端分离架构,前端通过REST API与后端交互,后端通过API调用AI诊断服务。具体架构如下: ``` 用户 --> 前端(Vue.js) --> 后端(Spring Boot) --> AI诊断服务(Python Flask) | | 数据库(MySQL) Redis(缓存) ``` #### 2. 数据库设计 以下是核心数据表设计: - **用户表(users)**: ``` id (主键,自增) username (用户名,唯一) password (密码,加密存储) email (邮箱) created_at (创建时间) ``` - **症状表(symptoms)**: ``` id (主键,自增) name (症状名称) description (症状描述) ``` - **疾病表(diseases)**: ``` id (主键,自增) name (疾病名称) description (疾病描述) suggestion (建议) ``` - **诊断记录表(diagnosis_records)**: ``` id (主键,自增) user_id (用户ID,外键) symptoms (用户输入的症状,JSON格式) result (诊断结果,JSON格式) created_at (记录时间) ``` #### 3. API设计 以下是核心API设计(RESTful风格): - 用户管理: - `POST /api/users/register`:用户注册 - `POST /api/users/login`:用户登录 - `GET /api/users/profile`:获取用户信息 - 症状与诊断: - `GET /api/symptoms`:获取所有症状列表 - `POST /api/diagnosis`:提交症状,获取诊断结果 - 健康档案: - `GET /api/records`:获取用户诊断记录 --- ### 三、代码实现 以下是项目的核心代码实现,分模块说明。 #### 1. 后端实现(Spring Boot) ##### 1.1 项目结构 ``` smart-medical-system/ ├── src/ │ ├── main/ │ │ ├── java/ │ │ │ └── com/ │ │ │ └── example/ │ │ │ └── smartmedical/ │ │ │ ├── SmartMedicalApplication.java │ │ │ ├── controller/ │ │ │ ├── service/ │ │ │ ├── entity/ │ │ │ ├── repository/ │ │ │ └── config/ │ │ └── resources/ │ │ ├── application.yml │ │ └── static/ │ └── test/ └── pom.xml ``` ##### 1.2 依赖配置(pom.xml) ```xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.example</groupId> <artifactId>smart-medical-system</artifactId> <version>0.0.1-SNAPSHOT</version> <name>smart-medical-system</name> <description>Smart Medical System for AI Diagnosis</description> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.7.5</version> <relativePath/> </parent> <dependencies> <!-- Spring Boot Web --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- Spring Boot Data JPA --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <!-- MySQL Driver --> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <scope>runtime</scope> </dependency> <!-- Spring Security --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-security</artifactId> </dependency> <!-- Redis --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <!-- Lombok --> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <optional>true</optional> </dependency> <!-- Spring Boot Test --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> </project> ``` ##### 1.3 配置文件(application.yml) ```yaml spring: datasource: url: jdbc:mysql://localhost:3306/smart_medical?useSSL=false&serverTimezone=UTC username: root password: your_password driver-class-name: com.mysql.cj.jdbc.Driver jpa: hibernate: ddl-auto: update show-sql: true redis: host: localhost port: 6379 server: port: 8080 ``` ##### 1.4 实体类(entity/User.java) ```java package com.example.smartmedical.entity; import lombok.Data; import javax.persistence.*; import java.time.LocalDateTime; @Data @Entity @Table(name = "users") public class User { @Id @GeneratedValue(strategy = GenerationType.IDENTITY) private Long id; @Column(unique = true, nullable = false) private String username; @Column(nullable = false) private String password; @Column(nullable = false) private String email; @Column(name = "created_at", nullable = false) private LocalDateTime createdAt = LocalDateTime.now(); } ``` ##### 1.5 数据库操作(repository/UserRepository.java) ```java package com.example.smartmedical.repository; import com.example.smartmedical.entity.User; import org.springframework.data.jpa.repository.JpaRepository; public interface UserRepository extends JpaRepository<User, Long> { User findByUsername(String username); } ``` ##### 1.6 服务层(service/UserService.java) ```java package com.example.smartmedical.service; import com.example.smartmedical.entity.User; import com.example.smartmedical.repository.UserRepository; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder; import org.springframework.stereotype.Service; @Service public class UserService { @Autowired private UserRepository userRepository; private final BCryptPasswordEncoder

第一局怎么都是Grok3获胜

好吧!

一句定胜负不公平,那我们三局两胜好吧!

第二局:股票智能推荐

提示词:实现一个智能股票推荐系统,要求每晚十二点统计出每个类别的股票代码,同时实现量化交易功能

Gork3回答

实现一个智能股票推荐系统并集成量化交易功能需要涉及多个模块,包括数据获取、数据处理、推荐逻辑、交易执行以及定时任务调度等。以下是一个完整的实现方案,使用 Python 作为主要开发语言,结合常见量化交易框架和数据接口。 ### 系统架构设计 1. **数据获取模块**:从股票市场获取实时或历史数据(如价格、成交量、财务数据等)。 2. **数据处理模块**:对数据进行清洗、特征提取和分类。 3. **推荐系统模块**:根据股票类别(如行业、概念等)推荐股票。 4. **量化交易模块**:实现自动化交易策略和执行。 5. **定时任务模块**:通过调度工具实现每晚12点的自动化任务。 --- ### 实现步骤 #### 1. 环境准备 安装必要的 Python 库: ```bash pip install pandas numpy tushare schedule ccxt backtrader ``` - `tushare`:获取股票数据(国内A股市场)。 - `ccxt`:对接交易所API(用于量化交易)。 - `backtrader`:量化交易回测和执行框架。 - `schedule`:定时任务调度。 - `pandas` 和 `numpy`:数据处理。 #### 2. 数据获取模块 使用 `tushare` 获取股票数据(需注册并获取 token)。以下代码示例获取股票基本信息和日线数据。 ```python import tushare as ts import pandas as pd # 设置 tushare token ts.set_token('your_tushare_token') pro = ts.pro_api() # 获取所有股票基本信息 def get_stock_basic(): df = pro.stock_basic(exchange='', list_status='L', fields='ts_code,symbol,name,area,industry,list_date') return df # 获取某股票的日线数据 def get_stock_data(ts_code, start_date, end_date): df = pro.daily(ts_code=ts_code, start_date=start_date, end_date=end_date) return df # 示例:获取所有股票并按行业分类 stock_basic = get_stock_basic() industry_groups = stock_basic.groupby('industry') ``` #### 3. 数据处理模块 对股票数据进行清洗和特征提取,计算技术指标(如均线、RSI等),为推荐系统和量化交易提供数据支持。 ```python import talib # 计算技术指标 def calculate_indicators(df): df['MA5'] = talib.SMA(df['close'], timeperiod=5) # 5日均线 df['MA20'] = talib.SMA(df['close'], timeperiod=20) # 20日均线 df['RSI'] = talib.RSI(df['close'], timeperiod=14) # RSI指标 return df # 示例:处理某股票数据 stock_data = get_stock_data('000001.SZ', '20230101', '20231001') stock_data = calculate_indicators(stock_data) ``` #### 4. 推荐系统模块 根据股票的行业分类和量化指标(如均线金叉、RSI超买超卖等),实现智能推荐。以下是一个简单的推荐逻辑:选择均线金叉且RSI处于合理范围的股票。 ```python def recommend_stocks(industry_groups, start_date, end_date): recommended_stocks = {} for industry, stocks in industry_groups: recommended_stocks[industry] = [] for ts_code in stocks['ts_code']: # 获取股票数据 stock_data = get_stock_data(ts_code, start_date, end_date) stock_data = calculate_indicators(stock_data) # 推荐逻辑:均线金叉且RSI在30-70之间 latest = stock_data.iloc[-1] if (latest['MA5'] > latest['MA20'] and stock_data.iloc[-2]['MA5'] <= stock_data.iloc[-2]['MA20'] and 30 < latest['RSI'] < 70): recommended_stocks[industry].append(ts_code) return recommended_stocks # 示例:运行推荐系统 start_date = '20230101' end_date = '20231001' recommended = recommend_stocks(industry_groups, start_date, end_date) # 输出结果 for industry, stocks in recommended.items(): print(f"行业: {industry}, 推荐股票: {stocks}") ``` #### 5. 量化交易模块 使用 `backtrader` 实现量化交易策略,并通过 `ccxt` 连接交易所执行实时交易。以下是一个简单的均线交叉策略示例。 ```python import backtrader as bt # 定义均线交叉策略 class MACrossStrategy(bt.Strategy): params = ( ('ma_short', 5), ('ma_long', 20), ) def __init__(self): self.ma_short = bt.indicators.SMA(self.data.close, period=self.params.ma_short) self.ma_long = bt.indicators.SMA(self.data.close, period=self.params.ma_long) self.crossover = bt.indicators.CrossOver(self.ma_short, self.ma_long) def next(self): if not self.position: # 没有持仓 if self.crossover > 0: # 金叉 self.buy() elif self.crossover < 0: # 死叉 self.sell() # 回测 def run_backtest(data, cash=100000, commission=0.001): cerebro = bt.Cerebro() cerebro.addstrategy(MACrossStrategy) cerebro.adddata(data) cerebro.broker.setcash(cash) cerebro.broker.setcommission(commission=commission) print('初始资金:', cerebro.broker.getvalue()) cerebro.run() print('最终资金:', cerebro.broker.getvalue()) # 示例:加载数据并运行回测 data = bt.feeds.PandasData(dataname=stock_data) run_backtest(data) # 实时交易(通过ccxt) import ccxt exchange = ccxt.binance({ 'apiKey': 'your_api_key', 'secret': 'your_secret_key', }) def execute_trade(symbol, action, amount): if action == 'buy': order = exchange.create_market_buy_order(symbol, amount) elif action == 'sell': order = exchange.create_market_sell_order(symbol, amount) print(f"执行交易: {action} {amount} {symbol}, 订单详情: {order}") # 示例:执行交易 execute_trade('BTC/USDT', 'buy', 0.1) ``` #### 6. 定时任务模块 使用 `schedule` 实现每晚12点的自动化任务,统计股票分类并生成推荐。 ```python import schedule import time from datetime import datetime def nightly_task(): print(f"任务开始时间: {datetime.now()}") stock_basic = get_stock_basic() industry_groups = stock_basic.groupby('industry') recommended = recommend_stocks(industry_groups, '20230101', '20231001') # 保存推荐结果到文件 with open('recommended_stocks.txt', 'w') as f: for industry, stocks in recommended.items(): f.write(f"行业: {industry}, 推荐股票: {stocks}\n") print("任务完成") # 每晚12点执行任务 schedule.every().day.at("00:00").do(nightly_task) while True: schedule.run_pending() time.sleep(60) # 每分钟检查一次 ``` #### 7. 部署与优化 - **部署**:将代码部署到云服务器(如阿里云、AWS),确保服务持续运行。 - **优化**:增加更多的推荐指标(如市盈率、成交量变化等),优化交易策略(如加入止损止盈逻辑)。 - **风险控制**:在量化交易中加入风险管理模块,避免过度交易或市场异常时的损失。 --- ### 注意事项 1. **数据源**:`tushare` 提供免费和付费数据接口,建议根据需求选择合适的套餐。 2. **交易所API**:在实时交易中,确保交易所账户有足够的资金,并遵守交易所的API使用规则。 3. **合规性**:股票交易涉及法律法规,请确保系统符合相关监管要求。 4. **安全性**:保护API密钥和账户信息,避免泄露。 --- ### 扩展功能 1. **机器学习推荐**:使用机器学习模型(如随机森林、深度学习)对股票进行预测和推荐。 2. **可视化**:使用 `matplotlib` 或 `plotly` 绘制股票走势和技术指标。 3. **多市场支持**:扩展到港股、美股等市场,使用 `yfinance` 或其他数据源。 通过以上步骤,您可以实现一个功能完善的智能股票推荐系统,并具备量化交易能力。

Claude3.7Sonnet回答

我可以为您设计一个智能股票推荐和量化交易系统的基本框架。以下是一个简单的Python实现: ```python import pandas as pd import numpy as np import yfinance as yf from datetime import datetime, timedelta import schedule import time from sklearn.ensemble import RandomForestClassifier import logging # 配置日志 logging.basicConfig(filename='stock_system.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') class StockRecommendationSystem: def __init__(self): # 股票分类字典,key为类别,value为该类别下的股票代码列表 self.stock_categories = { '科技': ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA'], '金融': ['JPM', 'BAC', 'WFC', 'C', 'GS'], '医疗': ['JNJ', 'PFE', 'MRK', 'UNH', 'ABBV'], '消费': ['PG', 'KO', 'PEP', 'WMT', 'MCD'] } self.model = RandomForestClassifier(n_estimators=100) def get_stock_data(self, ticker, period='1y'): """获取股票历史数据""" try: stock = yf.Ticker(ticker) hist = stock.history(period=period) return hist except Exception as e: logging.error(f"获取股票 {ticker} 数据失败: {e}") return None def prepare_features(self, data): """准备特征数据""" if data is None or len(data) < 50: return None, None # 计算技术指标 data['MA20'] = data['Close'].rolling(window=20).mean() data['MA50'] = data['Close'].rolling(window=50).mean() data['RSI'] = self.calculate_rsi(data['Close'], 14) data['MACD'], data['Signal'] = self.calculate_macd(data['Close']) # 移除NaN值 data.dropna(inplace=True) # 创建目标变量 - 第二天是否上涨 data['Target'] = (data['Close'].shift(-1) > data['Close']).astype(int) # 创建特征集 features = data[['MA20', 'MA50', 'RSI', 'MACD', 'Signal', 'Volume']].values target = data['Target'].values[:-1] # 移除最后一个没有目标的数据点 return features[:-1], target def calculate_rsi(self, prices, period=14): """计算RSI指标""" delta = prices.diff() gain = delta.where(delta > 0, 0).rolling(window=period).mean() loss = -delta.where(delta < 0, 0).rolling(window=period).mean() rs = gain / loss rsi = 100 - (100 / (1 + rs)) return rsi def calculate_macd(self, prices, slow=26, fast=12, signal=9): """计算MACD指标""" ema_fast = prices.ewm(span=fast, adjust=False).mean() ema_slow = prices.ewm(span=slow, adjust=False).mean() macd = ema_fast - ema_slow signal_line = macd.ewm(span=signal, adjust=False).mean() return macd, signal_line def train_model(self, ticker): """训练预测模型""" data = self.get_stock_data(ticker) features, target = self.prepare_features(data) if features is None or len(features) < 10: logging.warning(f"股票 {ticker} 的数据不足以训练模型") return False try: self.model.fit(features, target) return True except Exception as e: logging.error(f"训练模型失败: {e}") return False def predict_stock(self, ticker): """预测股票走势""" data = self.get_stock_data(ticker, period='60d') if data is None or len(data) < 50: return None # 准备最新的特征 self.prepare_features(data) latest_features = data[['MA20', 'MA50', 'RSI', 'MACD', 'Signal', 'Volume']].iloc[-1].values.reshape(1, -1) # 预测 probability = self.model.predict_proba(latest_features)[0][1] return probability def midnight_recommendation(self): """每晚12点统计各类别股票推荐""" logging.info("开始生成每日股票推荐...") recommendations = {} for category, stocks in self.stock_categories.items(): category_recommendations = [] for ticker in stocks: # 确保模型已训练 self.train_model(ticker) # 预测股票走势 probability = self.predict_stock(ticker) if probability is not None: category_recommendations.append({ 'ticker': ticker, 'probability': probability, 'recommendation': 'Buy' if probability > 0.6 else 'Hold' if probability > 0.4 else 'Sell' }) # 按照概率排序 category_recommendations.sort(key=lambda x: x['probability'], reverse=True) recommendations[category] = category_recommendations # 打印推荐结果 self.print_recommendations(recommendations) return recommendations def print_recommendations(self, recommendations): """打印推荐结果""" now = datetime.now().strftime("%Y-%m-%d") logging.info(f"===== {now} 股票推荐 =====") for category, stocks in recommendations.items(): logging.info(f"\n{category}类别:") for stock in stocks: logging.info(f"{stock['ticker']}: {stock['recommendation']} (概率: {stock['probability']:.2f})") def execute_trade(self, ticker, action, amount): """执行交易""" # 这里应该连接到您的交易API # 示例代码,实际实现需要根据您使用的交易平台API logging.info(f"执行交易: {action} {ticker} ${amount}") # 模拟交易执行 success = True # 假设交易成功 if success: logging.info(f"交易成功: {action} {ticker} ${amount}") return True else: logging.error(f"交易失败: {action} {ticker} ${amount}") return False def auto_trading(self, recommendations, max_investment=10000): """自动交易功能""" logging.info("开始自动交易...") # 总投资金额 total_investment = 0 trades = [] # 遍历所有推荐 for category, stocks in recommendations.items(): for stock in stocks: if stock['recommendation'] == 'Buy' and stock['probability'] > 0.7: # 计算投资金额 - 概率越高投资越多 investment

Claude的指标多一个,我就暂且让Claude获胜

第三局:来个简单的:推销自己

提示词:模仿毒舌,给我一个使用你们的理由

第三局大家觉得谁赢了?

Grok3 我求了它

Gork3我诚恳的求它,我真的求了,真的升级了:大家需要的可以参考本文:(2025最新)SuperGrok的次数有多少?国内支付手段如何使用订阅升级Grok3会员? Gork3如何订阅使用

cluadePro我真的有点被它的封号整得神经兮兮的,大家可以用点原生镜像什么的,大家需要订阅升级claudePro会员可以参考本文:(2025最新)Claude 3.7 Sonnet怎么样?**如何使用Claude 3.7 Sonnet模型?教你三招彻底解决Claude封号问题**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值