初等函数
初等函数是由
幂函数(power function)、
指数函数(exponential function)、
对数函数(logarithmic function)、
三角函数(trigonometric function)、
反三角函数(inverse trigonometric function)与常数经过有限次的有理运算(加、减、乘、除、有理数次
乘方、有理数次
开方)及有限次函数复合所产生,并且能用一个
解析式表示的函数。
它是最常用的一类函数,包括
常函数、
幂函数、
指数函数、
对数函数、三角函数、反三角函数(以上是
基本初等函数),以及由这些函数经过有限次
四则运算或函数的
复合而得的所有函数。即基本初等函数经过有限次的四则运算或有限次的函数复合所
构成并可以用一个解析式表出的函数,称为初等函数。
[1]
还有一系列
双曲函数也是初等函数,如
sinh的名称是双曲
正弦或超正弦,
cosh是双曲
余弦或超余弦,
tan
h是双曲
正切,
coth是双曲
余切,
sech是双曲
正割,csch是双曲
余割。初等函数在其
定义域内连续。
一个初等函数,除了可以用初等解析式表示以外,往往还有其他表示形式。例如 ,
三角函数 y=sinx 可以用无穷级数表为y=x-x
3/3!+x
5/5!-…初等函数是最先被研究的一类函数,它与人类的生产和生活密切相关,并且应用广泛。为了方便,人们编制了各种函数表,如
平方表、
开方表、
对数表、三角函数表等。
[2]
有理函数
两个复系数的多项式之比为有理函数,它实现扩充的复平面到自身的解析
映射。分式线性函数是一个特殊的有理函数,它在
复分析中有重要的意义。另一个特殊情形是幂函数w=z
n,n 是自然数,它在全平面是解析的。因此当n≥2时,它在全平面除z=0以外到处实现共形映射(
保角映射)。它将圆周|z|= r变为圆周|w|=rn,将射线argz=θ变为射线argw=nθ。任何一个区域,只要该区域中任两点的辐角差小于2π/n,它就是w=z
n的单叶性区域。幂函数w=z
n的
反函数为根式函数,它有n个值(k=0,1,…,n-1),称为它的分支。它们在任何区域θ
1z<θ
1+2π中都单值解析。
[2]